
DOT/FAA/AR-06/2

Office of Aviation Research
and Development
Washington, DC 20591

Flight-Critical Data Integrity
Assurance for Ground-Based
COTS Components

March 2006

Final Report

This document is available to the U.S. public
through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. This
document does not constitute FAA certification policy. Consult your local
FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center's Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page

1. Report No.

DOT/FAA/AR 06/2

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

March 2006

4. Title and Subtitle

FLIGHT-CRITICAL DATA INTEGRITY ASSURANCE FOR GROUND-BASED
COTS COMPONENTS 6. Performing Organization Code

7. Author(s)

Yann Hang Lee1 and Jim Krodel2

8. Performing Organization Report No.

10. Work Unit No. (TRAIS)

9. Performing Organization Name and Address
1Arizona State University
 Office of Research and
 Sponsored Projects
 Box 873503
 Tempe, AZ 85287

2United Technologies
 Pratt & Whitney Aircraft
 400 Main Street
 East Hartford, CT 06108

11. Contract or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Office of Aviation Research and Development
Washington, DC 20591

14. Sponsoring Agency Code

 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division Technical Monitor was Charles Kilgore.
16. Abstract

Ground processing systems are likely to use commercial-off-the-shelf (COTS) software and hardware for maintaining flight
critical data. Hence, the COTS ground processing systems must be trustworthy and secure in order to maintain the integrity of
the data. This requires various approaches, including information protection, data integrity and access security.

This report describes the results of our studies on the existing guidance governing the use of COTS components for safety-critical
applications of ground-based systems, and the objectives of current guidance from the point of view of applicability and
shortcomings. The use of hazard analysis and vulnerability analysis as a means for developing an effective risk mitigation
strategy is provided and the relevance of the Rotorcraft Advisory Circular to a COTS components scenario is summarized. In
order to address security and vulnerability concerns, several technologies such as encryption/decryption, authentication, access
control, intrusion detection, etc., particularly in relation to application within a health and usage monitoring system (HUMS)
context, are discussed. The report also includes two case studies involving COTS products to determine if they can be qualified
by following existing software guidance, such as DO-178B and DO-278.

17. Key Words

COTS, Ground-based, HUMS, Security, Safety, Access,
Process, Software

18. Distribution Statement

This document is available to the public through the National
Technical Information Service (NTIS) Springfield, Virginia
22161.

19. Security Classif. (of this report)

 Unclassified

20. Security Classif. (of this page)

 Unclassified

21. No. of Pages

 86

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

The authors wish to express their appreciation for the assistance of the Federal Aviation
Administration who provided valuable comments and suggestions. The authors would also like
to acknowledge their deep appreciation for the support of William Weiss of United Technologies
Research Center who provided significant contributions to this research.

 iii/iv

TABLE OF CONTENTS

 Page

EXECUTIVE SUMMARY xi

1. INTRODUCTION 1

2. OVERVIEW 4

3. DESCRIPTION OF THE SYSTEM UNDER STUDY 6

4. OVERVIEW OF AVAILABLE GUIDANCE RELATING TO COTS AND
GROUND-BASED SYSTEMS 9

4.1 Coverage of COTS in DO-278 9
4.2 The FAA Ground-Based, COTS-Related Process 10
4.3 Airborne Software Assurance Levels 12
4.4 Nonairborne Software Assurance Levels 13
4.5 Considerations of the HUMS ACs 14

4.5.1 Background of HUMS 14
4.5.2 The HUMS Advisory Circulars 15
4.5.3 Commercial Off-The-Shelf Approaches in the HUMS ACs 16

5. CURRENT AND EMERGING INDUSTRY APPROACHES TO SECURITY

AND SAFETY 20

5.1 Security Approaches 21

5.1.1 Cryptography 21
5.1.2 Cryptography in the HUMS Context 24
5.1.3 Access Security 25
5.1.4 Access Control in the HUMS Context (An Example) 28
5.1.5 Intrusion Detection 30
5.1.6 Intrusion Detection Within a HUMS Context 33
5.1.7 Information and Data Protection 34
5.1.8 Data Integrity Assurance in HUMS Context 36

5.2 Safety Approaches and Risk Mitigation 37

5.2.1 Hazard Analysis of the HUMS 37
5.2.2 Vulnerability Analysis of the HUMS 42

5.3 Considerations for Integrated Safety and Security Approaches 44

6. STUDY OF DATA INTEGRITY IN GROUND-BASED SYSTEMS 45

v

6.1 Case Study of COTS Having Differing HUMS Part Actions
(Case Study 1) 46

6.2 Case Study of a Widely Used COTS DBMS Within a HUMS Context

(Case Study 2) 50

6.3 The COTS Installation Software 56

7. SUMMARY AND RECOMMENDATIONS 56

7.1 Summary 56
7.2 Results 57
7.3 Recommendations 57

8. REFERENCES 58

9. GLOSSARY 61

APPENDICES

A—A Proof-of-Concept Demonstration Architecture
B—System Security Evaluation Criteria

 C—A Case Study of COTS Used in a Different Domain

vi

LIST OF FIGURES

Figure Page

1 Top-Level Architecture of HUMS 7
2 Proposed Common Risk Index 11
3 Enhanced Common Risk Index 14
4 Symmetric Key Cryptosystem 21
5 Message Authentication Code 22
6 Public Key Cryptosystem 23
7 Secure ACARS 24
8 Secure Network Architecture 29
9 Model of an Auditing System 36
10 Hazard Analysis Mode 37
11 Vulnerability Analysis Model 42
12 Risk Management Strategy 45
13 Representative Ground-Based System 51

vii

LIST OF TABLES

Table Page

1 Likelihood Definitions 11
2 Severity Definitions 12
3 Sample Hazard Analysis for a HUMS 38
4 Sample Vulnerability Analysis for a HUMS 43
5 Analysis of DO-278, AL4, for Two COTS Components 47
6 DO-278 COTS-Related Objectives—Case Study 2 52

viii

LIST OF ACRONYMS

AC Advisory Circular
ACARS Aircraft Communication Addressing and Reporting System
ACL Access control list
AIS Automated Information System
CAST Certification Authorities Software Team
CC Common criteria
CFR Code of Federal Regulations
CNS/ATM Communication, Navigation, Surveillance/Air Traffic Management
CORBA Common Object Request Broker Architecture
COTS Commercial off-the-shelf
CRC Cyclic redundancy check
DBMS Database management system
DoS Denial of service
EAL Evaluation assurance level
FAA Federal Aviation Administration
FHA Functional hazard assessment
GUI Graphical user interface
HF High frequency
HUMS AC Health and Usage Monitoring System Advisory Circular
HUMS Health and usage monitoring system
ICA Instructions for Continued Airworthiness
ICBM Inter Continental Ballistic Missile
IDS Intrusion Detection System
IT Information technology
IVM Independent verification means
MAC Message Authentication Code
MD5 Message Digest version 5
MDC Modification Detection Code
N/A Not applicable
NAS National Airspace System
OS Operating system
PC Personal computer
POC Proof-of-concept
PP Protection profile
SHA Secure hash algorithm
ST Security target
TOE Target of evaluation
VB Visual Basic®

VHF Very high frequency

ix/x

EXECUTIVE SUMMARY

Ground-based processing systems for aviation applications may process and store flight-critical
data. Hence, they must be trustworthy so that the integrity of the data can be assured. To be
trustworthy, a safety-critical, ground-based avionics system should provide not only security, but
also a number of other system properties, such as reliability, safety, and quality of service. The
increasing reliance on data networks and commercial off-the-shelf (COTS) components has
continued to expand the focus of safety and security from individual subsystems to the
connections between them.

Issues in making a COTS component-based, ground-based processing system for aircraft
maintenance trustworthy and secure have been investigated. Three guidance documents
constitute the basis of the investigation: (1) RTCA DO-178B, Software Considerations in
Airborne Systems and Equipment Certification, which provides guidance for airborne systems;
(2) DO-278, Guidelines For Communication, Navigation, Surveillance, and Air Traffic
Management (CNS/ATM) Systems Software Integrity Assurance, which gives guidance for
ground-based systems; and (3) the Health and Usage Monitoring Systems (HUMS) Advisory
Circulars (AC) (AC 27-1B Change 1 and AC 29-2C Change 1), which provides guidance to
achieve airworthiness approval for rotorcraft HUMS installation, credit validation, and continued
airworthiness.

This report includes the investigation results on a variety of issues that arise from the use of
COTS components in safety-critical systems and the approaches needed to ensure the integrity of
the data. With a focus on HUMS, the report first gives a big picture view at the use of COTS in
ground systems, the advantages and challenges posed by the use of COTS components. The
issues in applying the current available guidance relating to COTS and ground-based systems are
also discussed. This discussion includes the guidelines available in DO-278 pertaining to
planning, acquiring, verifying, and managing the use of COTS software.

Research was conducted into possible safety hazards and security threats leading to a loss of data
integrity by using vulnerabilities and safety hazard analysis techniques. The first step was to
identify the threats and hazardous events in the system. Following this identification, the
possible security and safety impacts and the criticality to the system operation were determined.
In addition, possible remedial techniques were devised to address the hazards and threats. A risk
mitigation strategy was adopted for each hazard and vulnerability corresponding to its risk level.
This strategy may, in turn, affect some of the original requirement definitions at the design
phase, resulting in a more robust design.

A significant amount of research effort was devoted to the evaluation of the applicable DO-178B
and DO-278 objectives to the COTS components of HUMS. A preferred method of determining
the applicability of the DO-178B and DO-278 objectives would be to perform a detailed analysis
of each system component for all the objectives of the applicable guidance document and
provide a rationale of compliance. A sample of the research investigation into this technique is
presented in the report, specific for the HUMS system under study. It provides insight into
possible ways in which such components may be analyzed, even if it is not always possible to

 xi

meet the required objectives due to the nature of COTS components. Of key importance in this
technique is the component’s assigned assurance level from the system safety assessment.

To evaluate the feasibility of risk mitigation techniques to address various hazards and
vulnerabilities in the HUMS system, a scaled down demonstration prototype of a HUMS system
was developed. In this prototype, risk management mechanisms are implemented in a scaled-
down, proof-of-concept version to determine the feasibility of such mechanisms. The
application of lessons learned from the case study and demonstration prototype were considered
for the HUMS case, however, they may be applied to other ground-based systems (such as
communication, navigation, surveillance, and air traffic management systems).

As a part of this investigative report, a study on the use of COTS in a different domain area for
the purpose of safety and security was performed. Towards this end, a case study was performed
on COTS component use in the development of a nuclear certifiable tester for the Minuteman III
Inter Continental Ballistic Missile. The study found that, similar to COTS components in
HUMS, the primary advantage gained in adopting a COTS approach is the reduction in design
cycle time and costs. In addition, there is an absolute necessity for a planning, requirement,
design approval, and certification process to incorporate COTS components in safety-critical
applications.

 xii

1. INTRODUCTION.

The primary purpose of this research is to investigate the challenges involved in making the
commercial off-the-shelf (COTS), ground-based processing system for aircraft maintenance
trustworthy and secure. With the advent of powerful information management and
communication tools, flight data and maintenance records can be easily collected, analyzed, and
disseminated for use by ground-based systems with COTS components. This presents an
opportunity for cost optimization and an increase in efficiency.

For instance, in the helicopter domain, a health and usage monitoring system (HUMS) may
provide several benefits including improved aircraft safety, increased availability and reliability,
rapid determination of aircraft status, reduced overhaul and repair costs, and reduced scheduled
component removal. Many helicopter parts are dynamically loaded and are subject to develop
fatigue cracks. If a flight-critical part fails, it could cause a catastrophic accident. As a result,
many of these parts are life-limited and are assigned a safe-life limit in flight hours based on
cumulative fatigue damage under variable amplitude loading. For example, according to
Miner’s theory of linear damage rule, the total fatigue is the sum of the cumulative damage
proportions at different stress levels. To calculate the safe-life limit, the aircraft’s usage or flight
maneuvers (flight regimes), the frequency of those maneuvers, or the percent usage of that
regime in a particular time frame is determined. This information is combined with material
strength characteristics and part test results, and then used to establish an acceptable calculated
retirement time for these parts. This calculated retirement time is conservative. The parts are
typically removed from service once the predefined retirement time is reached. However,
structural usage monitoring approaches dynamically adjust service life for individual
components based on measured actual usage spectrums while the helicopter is being flown. This
results in cost optimization and efficient use.

COTS components are used in many applications in ground-based aviation systems. For these
systems, the hardware is likely to be a set of personal computers (PC). The operational
software is also COTS, such as Microsoft® Windows®. The flight data may be saved in COTS
storage devices. Also, it is very likely that the equipment is connected to the Internet or wireless
networks, and installed in a nonsecure environment, and may involve human intervention in the
decision-making process. A different approach to system design, certification, or a mitigating
action may be required to make the system fail-safe.

As previously stated, the primary purpose of this research is to investigate the challenges
involved in making ground-processing aircraft maintenance systems composed of COTS
components trustworthy and secure. The investigation primarily focuses on three areas:

• Information and data protection. Data can be corrupted at any point during its lifetime.

Corruption can occur during computation, transmission, and storage. This area deals
with the protection and verification of information. Traditional techniques to handle
these problems are investigated and new techniques or combinations of existing
approaches are suggested.

 1

• Access security. Flight data is very vulnerable to malicious attacks as it can be
intercepted during data transfers and tampered with. In order to prevent this, various
forms of access security such as authentication, digital signature, and public key
infrastructure are investigated. The challenges involved in setting up such an
infrastructure, as well as the issues related to accountability of flight data accessed are
investigated.

• Process and objectives for data integrity in ground-based COTS systems. Data integrity

must be maintained. To ensure this, processes followed by the ground-based COTS
systems are analyzed to identify possible fault conditions and their potential impact on
safety requirements. Fault mitigation techniques are proposed to ensure that all
objectives for maintaining data integrity in ground-based COTS systems are satisfied.

This report closely considers the existing guidance: (1) RTCA DO-178B, Software
Considerations in Airborne Systems and Equipment Certification, which addresses the software
components in airborne systems; (2) DO-278, Guidelines For Communication, Navigation,
Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance,
for the assurance of flight-related software contained in nonairborne CNS/ATM systems; and (3)
the HUMS Advisory Circulars (AC) 27-1B Change 1 and AC 29-2C Change 1) for airworthiness
approval for rotorcraft HUMS installation, credit validation, and continued airworthiness. The
applicability of this guidance material to COTS components and any remedial techniques that
help meet the objectives outlined in the guidance were investigated.

To investigate the above stated areas of focus, the following steps were taken:

• Studied current and emerging industry approaches and guidelines for ground-based data
protection schemes with a focus on HUMS and condition-based maintenance systems.

• Studied the application of security and authentication approaches in other industries and
identified their limitations and strengths.

• Evaluated the objectives of DO-278 to the COTS components in HUMS application and
the approaches listed in the Rotorcraft HUMS Advisory Circular for certifying HUMS
ground-based systems that contain COTS components.

• Developed a functional hazard and vulnerability analysis as a means for developing an
effective risk mitigation strategy.

• Performed two case studies involving COTS products to determine if they can be
qualified by following the existing software aspects of certification guidance such as DO-
178B and DO-278. Case study 1 investigated both Microsoft Windows and Microsoft®
Access® as COTS components. Case study 2 considered a customer-designed HUMS
system, which used a COTS database management system (DBMS).

 2

• Conducted a representative demonstration project to evaluate the flexibility of the
proposed protection process and objectives in ensuring proper handling of flight-critical
information.

The report is structured as follows:

• Section 2 defines the term COTS and describes the motivation to use COTS components
in building ground-based, safety-critical systems. A detailed discussion on the
advantages (such as faster and cheaper development cycles) and challenges (such as
ensuring safety and security) when using COTS components in safety-critical systems is
provided.

• Section 3 provides an introduction to the HUMS, which is chosen as a representative
ground-based system for the study. A functional description and a top-level architecture
of a HUMS system are provided. The safety and security concerns of a HUMS system
are highlighted.

• Section 4 provides a description of the current available guidance relevant to use of
COTS components in safety-critical systems. DO-278, DO-178B, and the HUMS
Advisory Circular (HUMS AC) are evaluated to provide an introduction to the existing
approaches of integrating COTS components in safety-critical systems. This section also
discusses the guidelines pertaining to planning, acquiring, verifying, and managing the
use of COTS software available in the DO-278, DO-178B, and the HUMS ACs.
Alternate approaches for acceptance of COTS software in safety-critical systems are also
discussed.

• Section 5 presents the current and emerging industry approaches regarding safety and
security. An introduction to cryptography, access security, intrusion detection, and
information and data protection technologies is presented. The use of these technologies
is also discussed in context of a HUMS. Toward this end, vulnerabilities to which
airborne data is prone and the ways by which it can be protected are highlighted. The
notions of safety and risk mitigation strategies are introduced. This section also presents
a hazard and vulnerability analysis of HUMS and its various subsystems, such as
ACARS, HUMS database, COTS software, HUMS gateway, and HUMS internal
network. Appropriate safety and risk mitigation approaches are presented. The section
concludes with a discussion on integration of safety and security approaches for HUMS.

• Section 6 uses the HUMS as a representative ground-based system to see how the COTS-
specific objectives of DO-278 help in the planning, acquisition, verification, and
configuration management process. A preferred method of determining the applicability
of the DO-278 objectives would be to perform a detailed analysis of each system
component for all the objectives of this guidance document and provide a rationale of
compliance. To illustrate this technique, two case studies involving use of COTS
software in a sample HUMS system are presented. Case study 1 investigated both
Microsoft Windows and Microsoft Access as COTS components. Case study 2
considered a customer-designed HUMS system, which used a COTS DBMS. Both case

 3

studies determine the applicability of the DO-278 objectives to the COTS component by
performing a detailed analysis of that component for all the objectives of DO-278.

• Section 7 provides a conclusion and identifies promising areas of further research.

• Sections 8 and 9 document the references and the glossary of terms used in this
document, respectively.

• Appendix A describes the outline of the demonstration project implemented as a proof-
of-concept.

• Appendix B describes the current standard used in evaluating the security of a system
(i.e., the common criteria).

• Appendix C presents a case study (within a different domain) in which COTS
components are used to meet safety and security requirements.

2. OVERVIEW.

DO-178B [1] provides guidance for software used in airborne systems, while DO-278 [2]
provides guidance for flight-related software used in ground-based systems. This report focuses
on ground-based COTS systems and, as such, uses DO-278 for software assurance guidance.
This report also considers ways and means of effectively using ground-based data and considers
the HUMS advisory material (AC-27-1B Change 1 and AC-29-2C Change 1).

Since this report revolves around the use of COTS components, a definition of the term COTS is
imperative. As defined in DO-278, COTS software is a term used to encompass a wide range of
software that includes [2]:

• Purchased software,
• Nondevelopmental items, and
• Software previously developed without consideration of DO-278 (or DO-178B).

The typical characteristics of COTS software are [2]:

• May or may not be approved through other approval processes

• Partial or no data may be available as evidence of compliance with objectives of the DO-
278 (or DO-178B)

The term off-the-shelf in COTS means that it was not developed by the user but was already
existing. Rather than write volumes of new code, COTS software components are used as
building blocks to be fit together to satisfy the requirements of new systems. A COTS-based

 4

system is one that uses one or more COTS components. COTS-based systems have been cited to
have multiple advantages including [3]:

• Development cycle time is reduced. The complex, sophisticated software systems typical

today would not be practical to build if every function had to be written from scratch for
each new system.

• Total development cost, which includes both development and maintenance cost, is
reduced.

• The component is often already in extensive use with a large community of satisfied
users.

Consequently, software developers build many parts of new systems by adding functionality
provided by COTS software components. However, many challenges need to be addressed when
using COTS in safety-critical systems including [3]:

• It is often difficult to know what someone else did to ensure that their software

component is reliable and will execute as expected when integrated into a new and
complete system.

• The user has limited or no access to source code or other software life cycle data.

• The user usually has no control over the requirements and updates of the COTS.

• There is a learning curve associated with the use of COTS.

• COTS component developer may not have given any attention to safety-critical aspects.

A paper developed by the international Certification Authorities Software Team (CAST) also
documents several concerns when using a COTS operating system (OS) in safety-related
systems, when the COTS OS does not have supporting DO-178B software life cycle data. These
concerns include (not an exhaustive list, since each project will have its own specific issues) [4]:

• Integrity of COTS OS design and implementation is unknown to the user or integrator.

• Unknown functionality and side effects in the COTS OS may exist.

• The COTS OS can negatively affect the operation of other software applications that are
executing using the functions of the OS and COTS resource management hardware and
software.

• Mitigation approaches to address the COTS OS’s potential effects are sometimes
themselves implemented in the COTS OS’s environment.

 5

• It may not be technically feasible to establish completion criteria for identifying and
addressing all the failure condition classifications of functions that could be affected by
the COTS OS.

• Verification of correctness and completeness of functionality and mitigation schemes
external to the COTS OS is difficult.

• Errors may exist in the COTS OS that are unknown to the applicant or developer.

• Patches to the COTS OS could have effects on the safe implementation.

• The configuration control, problem report resolution, and continued operational safety of
any application containing COTS software requires special attention.

• It is difficult to satisfy the objectives of DO-178B/ED-12B (or other certification
authority approved guidance) for all software in the airborne application when COTS
software is used.

• COTS products might be susceptible to viruses.

• The support provided by COTS software suppliers may not be compatible with the long-
life needs of safety-critical systems (e.g., aircraft).

As can be seen from the above discussion, the same characteristics that make COTS an attractive
alternative to in-house development may cause serious safety and security concerns.
Nevertheless, the potential gains of using COTS should not be ignored. By following guidelines
governing the use of COTS, systems can be built that have a high degree of reliability.

3. DESCRIPTION OF THE SYSTEM UNDER STUDY.

For the purpose of this report, a generic HUMS has been selected as a representative ground-
based system. A HUMS attempts to predict appropriate times to change parts based on actual
use of the parts, as opposed to the more traditional technique of changing parts after a specific
number of operating hours. A HUMS can be defined in several ways. One way is based on what
it does as identified by the following characteristics [5]:

• Health. A measure of the overall flightworthiness of the aircraft. Health is assessed by

examining instantaneous indicators of the well-being of vital components on the aircraft,
as well as by trend analysis of these indicators.

• Usage. A measure of how the life of components is being expended on the life-limited

parts of the aircraft. Usage determines the time to overhaul the major components.

• Monitoring. A means by which information can be gathered on the vital systems of the

aircraft.

 6

The HUMS AC definition of HUMS separates the health and monitoring systems as follows
[6 and 7]:

• Health Monitoring System. Equipment, techniques, and/or procedures by which selected

incipient failure or degradation can be determined.

• Usage Monitoring System. Equipment, techniques, and/or procedures by which selected

aspects of service history can be determined.

Although the general role of HUMS is widely accepted, little consensus exists on what exactly
constitutes a HUMS. References 6 and 7 require that a HUMS consist of a variety of sensors
and data acquisition systems onboard the rotorcraft or on a ground station (or a combination of
both). Other texts only require the HUMS to contain the ground-based processing system.
References 5 and 7 provide detailed descriptions of the HUMS concept and specific
implementations of the concept. Because of this lack of consensus, this report’s view of a
HUMS needs to be stated. For the purpose of this report, a HUMS is a system which includes
the following:

• Avionics equipment and data.
• Associated ground equipment and data.

A typical high-level architecture diagram of a HUMS is shown in figure 1.

FIGURE 1. TOP-LEVEL ARCHITECTURE OF HUMS [8]

The HUMS can be thought of as three distinct parts, as depicted in figure 1. The aircraft
contains a large number of onboard sensors that feed data to the onboard processor(s). The
processor(s) then transmit this data through a channel, such as the Aircraft Communication
Addressing and Reporting System (ACARS) to the ground stations. The ACARS channel may
also have some data storage with the actual data transfer to ground stations occurring offline at a
later stage. The ground stations receive data and store it for subsequent inspection and use.

Ground Station(s)

Onboard
Processor(s)

Data Storage/
ACARS

Ground
Processor(s)

Database(s)

On - Aircraft

Data
Link

On - Ground

Data
Link

 7

To ensure that data integrity is maintained, one must investigate the safety and security issues in
the HUMS. Figure 1 shows that data can be compromised at two points, during transmission
through the ACARS and during storage in the databases on the ground. Discussions about these
two areas of vulnerability follow.

The ACARS is the data link used by most commercial aircrafts today for two-way
communication between the aircraft and ground control. It transmits data in text format over
available radio frequency channels. Anyone can intercept these transmissions and gain
information such as aircraft type, condition, position, projected track, cargo content, and
operational details [9] from the transmission. There are three primary concerns with using such
an unsecured network [10]:

• Privacy concerns. Anyone within range and having a very high frequency (VHF) or a

high-frequency (HF) device can intercept ACARS signals. This raises an issue of
privacy of the health and usage signals transmitted from the aircraft to the ground
stations.

• Authenticity. Assurance cannot be obtained that the transmission is coming from the

aircraft/authorized ground station. That is, the origin of the message cannot be
guaranteed.

• Data Integrity. The integrity of the data during transmission cannot be guaranteed.

However, other nonsecurity related concerns exist as well:

• Saturation of radio frequencies. Since only a limited bandwidth is available with an ever-

increasing number of flights, the number of new frequencies that can be allocated is very
limited.

• Decrease in quality of data transmission. Because of the exponential increase in flight

demands, the available bandwidth is continually shrinking, resulting in poor quality of
data transmissions to and from ground control staff.

The ground-based processing systems are points where the data is vulnerable as well. The
primary concerns and some techniques for consideration for data integrity during storage are:

• Access security. Only authorized personnel should be able to access the HUMS data.

Sophisticated schemes (such as firewalls and encryption) need to be considered.

• Authentication and access control. Simple identification/password mechanisms do not
provide the level of security desired. Modern techniques such as digital signatures
should be adopted. Also, different users should be assigned different privilege levels to
prevent malicious/involuntary corruption of data by authorized users.

 8

• Intrusion detection. Intrusion detection techniques should be adopted to detect patterns
of intrusive behavior (such as denial-of-service (DoS) attacks) and take the necessary
corrective action.

• Information verification and accountability. Before the data can be used, it should be
ensured that data has not been modified maliciously or due to other considerations such
as noise bursts, power surges, and so on. Techniques such as checksum calculation,
cyclic redundancy check and message authentication codes should be investigated. The
use of audit trails should also be considered as a vehicle to maintain accountability. An
audit trail is a series of records of events that take place in a system. The events may be
related to the OS, application programs, or users of the system. An independent
examination of these records can ensure compliance with established controls, policy,
and operational procedures [11]. Audit trails thus enable a user to verify the activity of
an information system and can help trace violations of security policies back to
individuals.

4. OVERVIEW OF AVAILABLE GUIDANCE RELATING TO COTS AND GROUND-
BASED SYSTEMS.

4.1 COVERAGE OF COTS IN DO-278.

The Federal Aviation Administration (FAA) provides guidance to developers of airborne
software systems so that those systems meet the regulations and are safe and execute as expected
when integrated into a new and complete system. The implementation phase of airborne
software development is typically manifested by tight control of the entire development effort.
Most aspects of the development of a software system (design, configuration control, quality
assurance, life cycle management, etc.) are under the control of the developer. Therefore, the
developer of a new airborne system, and the FAA, can have confidence that if the guidelines are
followed during the development of the new system, then it will perform its intended
functionality with a level of assurance that complies with airworthiness requirements. The
software assurance guidelines are published as RTCA DO-178B.

In 2002, RTCA Inc. published guidelines for developers of ground-based systems. The ground-
based systems are often CNS/ATM systems and typically include COTS software components.
These guidelines are published as DO-278, Guidelines for Communication, Navigation,
Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance
[1]. DO-278 is based on DO-178B, and for software that is being written line by line, the
guidance is very similar to DO-178B. DO-278 also addresses the incorporation of COTS
software components, and Section 4 of DO-278 is devoted mainly to software development with
COTS software components.

Section 4 of DO-278 specifically addresses the use of COTS software and addresses four
processes (planning, acquisition, verification, and configuration management) that must be
considered when COTS software is used. The extensive discussion of COTS software is new to
DO-278 and was not included in DO-178B. Section 3 of DO-278 contains ten tables of
objectives derived from ten tables of objectives in DO-178B. Some of the objectives in these ten

 9

tables are COTS-related. The COTS-specific objectives in Section 4 of DO-278 are an addition
to, rather than a replacement of, the objectives in section 3.

This project analyzes all of the DO-278 COTS-related objectives from the perspective of a
representative COTS software component in a representative ground-based system (see section 6
of this report).

4.2 THE FAA GROUND-BASED, COTS-RELATED PROCESS.

Many analyses are needed for an effective assessment of a ground-based system. Some of these
include Operational Safety Assessment, Comparative Safety Assessment, Preliminary Hazard
Analysis, Subsystem Hazard Analysis, System Hazard Analysis, Operating and Support Hazard
Analysis, Test Safety Analysis, System Safety Program Plan, and a safety assessment. Some of
these analyses and documents are used to accommodate FAA Order 8040.4, which states that the
FAA should use a formal, disciplined, and documented decision-making process to address
safety risks in relation to high consequence decisions impacting the complete product life cycle.
The products resulting from this order are System Safety Handbook [12] and System Safety
Management Program [13]. Precise definition of the assessment process of a ground-based
system at this time is difficult because some of the acquisition process and guidelines are still
undergoing change at this time with the National Airspace System (NAS) Modernization
Program being the driving force.

The FAA System Safety Handbook for ground-based systems defines system safety as “aiming
to optimize safety by the identification of safety-related risks, eliminating or controlling them by
design and/or procedures, based on acceptable system safety precedence” [12]. System safety is
risk management. At one end of the spectrum, it is not acceptable to have air transport systems
that would generally be considered dangerous (catastrophic failures occurring at frequent
intervals). At the other end of the spectrum, it is not practical or cost-effective to build systems
that are 100% reliable (no failures at all, not even very minor failures at very infrequent
intervals). Therefore, practicality and cost effectiveness lie in the middle of the spectrum,
balancing the likelihood that a failure will occur, with the consequences if that failure actually
does occur. Consequently, in reference 14, Stroup, et al. have proposed a Common Risk Index,
which is a matrix that can be used to determine a qualitative measurement (high, medium, or
low) of potential system risk by combining the severity of consequences with the likelihood of
occurrence. For example, a hazard whose likelihood is classified as extremely remote, and
severity as catastrophic is classified as having a high risk. The matrix can then be mapped onto
the assurance levels specified in DO-278, thereby helping developers in defining an effective
risk mitigation strategy. Section 5.3 of this report will describe how the likelihood and severity
information obtained from the mapping between this matrix and assurance levels of DO-278
software can be used in the generation of a risk mitigation strategy. The matrix in figure 2
illustrates the proposed Common Risk Index. The definitions of likelihood and severity terms
are given in tables 1 and 2.

 10

No effect

Minor

Major

Hazardous

Catastrophic

Extremely
Improbable

Extremely
Remote

RemoteProbable

Minor

Major

Hazardous

Catastrophic

Extremely
Improbable

Extremely
Remote

RemoteProbable
Likelihood

Severity

High risk
Medium risk
Low risk

High risk
Medium risk
Low risk

FIGURE 2. PROPOSED COMMON RISK INDEX [13]

TABLE 1. LIKELIHOOD DEFINITIONS [13]

Likelihood Definitions
Probable Qualitative: Anticipated to occur one or more times during the

entire system/operational life of an item.
Quantitative: Probability of occurrence per operational hour is
equal to or greater than 1 x 10-5

Remote Qualitative: Unlikely to occur to each item during its total life.
May occur several times in the life of an entire system or fleet.
Quantitative: Probability of occurrence per operational hour is less
than 1 x 10-5, but greater than 1 x 10-7

Extremely remote Qualitative: Not anticipated to occur to each item during its total
life. May occur a few times in the life of an entire system or fleet.
Quantitative: Probability of occurrence per operational hour is less
than 1 x 10-7 but greater than 1 x 10-9

Extremely improbable Qualitative: So unlikely that it is not anticipated to occur during
the entire operational life of an entire system or fleet.
Quantitative: Probability of occurrence per operational hour is less
than 1 x 10-9

 11

TABLE 2. SEVERITY DEFINITIONS

Severity Definitions
Catastrophic Safety: Unacceptable results in fatalities and/or system loss.

Security: Loss of mission capability for extended period.

Hazardous Safety: Large reduction in safety margin or functional capability.
Security: Consistent severe impairment of mission capability.

Major Safety: Significant reduction in safety margin or functional capability.
Security: Noticeable impact on security.

Minor Safety: Slight reduction in safety margin or functional capability.
Security: No noticeable impact.

No Effect Safety: No effect on safety.
Security: No effect on security.

Section 5.3 investigates how the above matrix can be used in developing an effective risk
mitigation strategy.

4.3 AIRBORNE SOFTWARE ASSURANCE LEVELS.

All airborne software could potentially have an impact on safety. Hence, it is subject to
certification requirements as documented in Title 14 Code of Federal Regulations (CFR) [15].
DO-178B defines a set of objectives to establish assurance that airborne software has the
integrity needed for use in safety-related applications [2]. DO-178B is implemented by AC 20-
115B. AC 20-115B considers DO-178B to be a means, but not the only means, to secure FAA
approval of digital computer software. The guidance of DO-178B is provided in the form of
objectives for life cycle processes (this is defined according to software levels A through E),
activities to be performed to achieve these objectives, and evidence indicating that these
objectives have been met [16]. DO-178B acts as a guideline for determining that an acceptable
level of confidence is present in the software aspects of airborne systems (in accordance with
FAA airworthiness requirements). The primary part of the DO-178B definition of the different
software level is as follows [1]:

• Level A. Software that could cause or contribute to the failure of the system resulting in

a catastrophic failure condition.

• Level B. Software that could cause or contribute to the system resulting in a hazardous
or severe failure condition.

• Level C. Software that could cause or contribute to the system resulting in a major
failure condition.

• Level D. Software that could cause or contribute to the system resulting in a minor
failure condition.

• Level E. Software that could cause or contribute to the system resulting in no effect on
the system.

 12

4.4 NONAIRBORNE SOFTWARE ASSURANCE LEVELS.

The levels in DO-278 are based on and relevant to DO-178B. In DO-278, these levels are called
assurance levels and, when applied to a non-airborne-based system, are represented by the
following [2]:

• Assurance Level 1 (AL1). Software that could cause or contribute to the failure of the

ground-based system resulting in a catastrophic failure condition. Equivalent to DO-
178B Level A (as mentioned in section 4.3 of this report).

• Assurance Level 2 (AL2). Software that could cause or contribute to the failure of the
ground-based system resulting in a hazardous or severe failure condition. Equivalent to
DO-178B Level B (as mentioned in section 4.3 of this report).

• Assurance Level 3 (AL3). Software that could cause or contribute to the failure of the
ground-based system resulting in a major failure condition. Equivalent to DO-178B
Level C (as mentioned in section 4.3 of this report).

• Assurance Level 4 (AL4). This level accounts for certain CNS/ATM (ground-based)
systems where AL3 is too stringent and AL5 is too lenient. There is no DO-178B
equivalent for this assurance level.

• Assurance Level 5 (AL5). Software that could cause or contribute to the failure of the
ground-based system resulting in a minor failure condition. Equivalent to DO-178B
Level D (as mentioned in section 4.3 of this report).

• Assurance Level 6 (AL6). Software that could cause or contribute to the failure of the
ground-based system resulting in no effect on the system. Equivalent to DO-178B Level
E (as mentioned in section 4.3 of this report).

The DO-278 assurance levels are correlated to risk, as illustrated by an enhanced Common Risk
Index in figure 3.

The assigned assurance levels will depend on the function to be performed by the software and
the impact of that function’s failure. The specific process applied to the software will vary,
depending on whether it is a COTS component or not.

 13

AL 1 AL 2

AL 5 AL 6

AL 3 AL 4

High Risk

Low Risk

Medium
Risk

AL 2

AL 3

AL 6

AL 5

AL 4

AL 3

AL 4

AL 6

AL 5

AL 4

AL 4

AL 5

AL 6

AL 6

AL 5

AL 1

AL 2

AL 6

AL 3

Catastrophic

Hazardous

No Safety
Effect

Minor

Major

Probable

Remote Extremely
Remote

Extremely
Improbable

Likelihood

Se
ve

rit
y

AL 5

FIGURE 3. ENHANCED COMMON RISK INDEX [17]

4.5 CONSIDERATIONS OF THE HUMS ACs.

This section will review the current guidance listed in the Rotorcraft HUMS ACs’ guidance
material found in AC-27-1B Change 1 and AC-29-2C Change 1 for certifying HUMS ground-
based systems that contain COTS components. The specific guidance of concern is found in
Chapter 3 and Miscellaneous Guidance Section 15 (MG 15) of the HUMS ACs. This section
will also consider other potential guidance such as DO-178B and DO-278B.

4.5.1 Background of HUMS.

Health and usage monitoring has become a focal point in the helicopter domain. Anticipated
benefits include improved aircraft safety, increased availability and reliability, rapid
determination of aircraft status, reduced overhaul and repair costs, and reduced scheduled
component removal [18]. Many helicopter parts are dynamically loaded and are subject to
develop fatigue cracks. As a result, many of these parts are life-limited and are assigned a safe-
life limit in flight hours based on Miner’s theory of linear damage rule. The process is to
determine the aircraft’s usage or flight maneuvers (flight regimes), the frequency of those
maneuvers, or the percent usage of that regime in a particular time frame. This information is
combined with material strength characteristics and part-testing results. These loads are then
used to establish an acceptable calculated retirement time for these parts [19]. The development

 14

of a HUMS is rather unique in that the application software, perhaps level A, that is developed
under DO-178B could be integrated with COTS software that may require a level D (or even
higher) software assurance level, depending on the functional hazard assessment (FHA).

Recent efforts have explored substituting the assumed worst-case usage with the actual measured
usage to calculate retirement times. This would permit safe part-life to be extended if the actual
measured usage is less than then assumed usage. It would also permit early removal of parts to
maintain safety margins if the actual usage was more severe than assumed. In reference 19, a
design assessment is carried out for an application taking such an approach. The application
under study in reference 19 was a Helicopter Structural Usage Monitor. The usage monitoring
effort acquires helicopter sensor data, which is used to determine the aircraft’s flight regime.
The regimes are calculated in real time once per second and stored in a data file that is used on
landing to calculate a damage fraction for the part. This data is packed and sealed with a cyclic
redundancy check (CRC) algorithm. The damage data is then moved to a ground-based
computer [19].

A business case point of view in the HUMS domain is presented in reference 8, but it is cited
that in June 1999, at the time the business case was developed, the HUMS ACs (AC 27-1B
Change 1 and AC 29-2C Change 1) were in draft form, with the intent to provide specific
guidance for FAA approval of functions implemented on a PC-based ground station. Because of
the guidance being in draft form, several HUMS applications chose not to include COTS
software as part of their HUMS solution. As a result, there is little current data as to the
effectiveness of the AC guidance related to COTS. However, since the official release of the
HUMS ACs guidance material, to date, no HUMS applications for rotorcraft have been approved
for maintenance credits. That is, the HUMS applications that were approved by the FAA for
rotorcraft to date, do not replace the existing maintenance program requirements. These HUMS
applications have been approved on a no maintenance credit basis. This means that maintenance
actions are not predicated on the data collected and processed by the approved HUMS
applications.

4.5.2 The HUMS Advisory Circulars.

Advisory circular material AC 27-1B and AC 29-1C for airworthiness approval of HUMS was
developed by the Rotorcraft Health and Usage Monitoring System Advisory Guidance, which
consists of the FAA, the Joint Aviation Authorities (JAA), the Aerospace Industries Association
of America Inc. (AIA), and the Association Europeene des Constructeurs de Material
Aerospatial [6 and 7].

The advisory circulars provide guidance to achieve airworthiness approval for three basic
aspects to HUMS certification:

• Rotorcraft HUMS installation
• Credit validation
• Instructions for Continued Airworthiness (ICA)

 15

Certification of HUMS must address all three aspects. These aspects are not independent of each
other and have varying degrees of interaction among themselves. Installation includes all the
equipment needed for the end-to-end application that is associated with acquiring, storing,
processing, and displaying the HUMS application data, including airborne and ground-based
equipment. Credit validation includes evidence of effectiveness for the developed algorithms,
acceptance limits, trend-setting data, tests, etc., and for the demonstration methods employed.
ICA includes the methods used to ensure continued airworthiness of those parts that could
change with time or use.

4.5.3 Commercial Off-The-Shelf Approaches in the HUMS ACs.

AC 27-1B Change 1 and AC 29-2C Change 2 (referred to as HUMS ACs for the remainder of
this report) have very specific terms when discussing the various approaches to using COTS in a
HUMS. The HUMS ACs explain the following terms:

• COTS. This term defines equipment, hardware, and software that is not qualified to

aircraft standards.

• Mitigating Action. It is an autonomous and continuing compensating factor that may
modify the level of qualification associated with certification of a HUMS application.
Mitigating actions are often performed as part of continued airworthiness considerations
and are also an integral part of the certification.

• Independent Verification Means. An independent process to verify the correct
functionality of a HUMS application on a ground station that uses COTS. The intent of
independent verification is to gain some degree of confidence in the COTS operation
reliability. Note: This process may be discontinued when sufficient confidence in the
application has been achieved.

The COTS definition in the HUMS ACs is very different than traditional COTS definitions. The
HUMS ACs state that COTS can be any software or hardware that has not been developed to
DO-178B (or DO-254) standards. This definition means that for the FAA to approve a HUMS,
the COTS software and hardware must both be developed and qualified to acceptable aircraft
standards. However, the group that developed the HUMS ACs recognized that many existing
ground stations used COTS components, like PCs and commercial operating systems, to process
maintenance data collected through traditional means (i.e., manual recording of component life
usage by humans). Hence, the developers of the HUMS ACs wanted to continue to allow this
use of COTS components, but there needed to be some acceptable criteria that these COTS
components needed to be evaluated against. The HUMS ACs do not relieve the HUMS
application software from having to comply with DO-178B, even if this software resides in
ground-based COTS station. An example of the HUMS application software is the software that
is developed to recognize the various flight regimes and processes raw data to determine the
extent of wear and tear on a specific aircraft part. This HUMS application software may reside
in the ground-based COTS station.

 16

DO-178B defines COTS in a different way. The DO-178B glossary defines COTS software as
“Commercially available applications sold by vendors through public catalog listings” [1]. This
definition states nothing about the pedigree of the COTS product relative to DO-178B. In fact, if
one were to have a commercially available product that has been developed to the guidance of
DO-178B, then it would be COTS under DO-178B, but not under the HUMS ACs.
Correspondingly, if one were to have an in-house developed software module not developed to
DO-178B, then the HUMS ACs state it is COTS, but under DO-178B it would not be COTS
because it was not commercially available.

In the HUMS ACs, a mitigating action is very different from independent verification means
(IVM), and they should not be confused. Mitigating action can be viewed as a compensation
factor applied to the HUMS, which can result in an allowance in the reduction of the required
level of qualification for the HUMS hardware and software. The compensating factor applied as
a mitigating action is permanent. The IVM addresses the need to independently verify the
results of COTS software or hardware components that have not been developed to DO-178B (or
DO-254 for complex electronic hardware). The intent of the IVM process is to gain some degree
of confidence in the operational reliability of the ground-based COTS station. This process may
be discontinued when sufficient confidence in the application has been achieved.

4.5.3.1 The HUMS ACs Intent and Other Considerations.

Like airborne systems, the HUMS system must determine its end-to-end criticality by
performing a FHA, including the ground components. From a hardware point of view, ground
components can include not only a PC desktop, laptop, and server, but also subassembly
components such as modems, Ethernet cards, or memory transfer media (such as memory sticks).
On the software side, not only does the system under review need to consider the computing
engine software (such as databases or spreadsheet software), but also the enabling software (such
as communications driver software and the OS). Any potential effect on the data must be
considered in the FHA. The HUMS ACs’ intent is to have the FHA identify all system
components, including COTS components, and determine the component’s criticality level to
find its corresponding software level. Any COTS component performing such actions (i.e., that
determines component life time) must come under the guidance of DO-178B or an acceptable
alternative.

Compliance to the determined FHA criticality level can be accomplished by qualification plus
appropriate mitigating action. The final level of equipment qualification may not only be the
result of technical consideration, but also of other mitigating actions, which can result in a
reduction of qualification levels for equipment.

4.5.3.1.1 The HUMS ACs and Service History.

The HUMS ACs further state that for COTS components, the IVM must be accompanied with
satisfactory service history. Recent service history findings have shown, however, that for
higher criticality systems, service history may simply not be an appropriate or practical choice.
Care must be taken when using service history since it is usually part of a system. Any use of
service history for a COTS component is typically an extrapolation of the system’s performance.
This extrapolation must be justified [20]. Ferrell [20] reported at the FAA 2003 National

 17

Software Conference that when trying to apply an effective service history argument to a
component of a system, problematic data collection practices, problematic interpretations, and
associated assumptions are moving targets. Such problems provide a challenge to effectively
quantifying and justifying the data used to support the service history case.

Given Ferrell’s [20] findings with regards to the difficulty of establishing a sound service history
base, at least for the higher criticality systems, the HUMS AC statement of “satisfactory service
history” would be very difficult to argue for.

Take, for example, the use of Miner’s Cumulative Damage theory. Historically, the approach
has been validated via service history. With the HUMS proposition of recalculating Miner’s
laws using data from actual usage, an effective database of service history is lacking for
validation of any new directed action with regards to the part’s continued performance ability.

4.5.3.1.2 The Required Guidance Objectives for Air- and Ground-Based Software.

The service history discussion above is one of several related to the state of accepting COTS
components. The more important issue or question to debate is, given that DO-178B was
developed for airborne systems, What are the safety attributes of COTS components that are now
ground-based?

DO-178B requires structural coverage to identify any code not exercised through tests (so that
any potential unintended functionality can be identified and addressed). DO-248B, section 4.2,
provides a glimpse of the source of this requirement back to 14 CFR. 14 CFR 25.1309, Subpart
F – Equipment, states that the equipment, systems, and installations “must be designed to ensure
that they perform their intended function under any foreseeable operating conditions.” It has
been observed that the requirement for structural coverage on ground-based systems may
financially preclude the use of COTS. Yet these COTS components may provide many benefits.
Perhaps a reassessment of the structural coverage requirements for ground-based systems should
be considered.

In June 2002, the CAST completed a position on an Automatic Code Generation (ACG) Tools
[21]. The CAST paper recognizes that halts during execution, overflows, variations in time
response, hardware and software incompatibilities, hardware failures, unbounded recursive
algorithms, bad stack usage, resource contention, task conflicts, bad interaction with other
systems, etc., are examples of issues that may jeopardize flight safety if they appear in aviation
software. However, these types of errors may not have any influence on the flight safety if they
occurred within a non-airborne-automated, code-generation tool.

The CAST paper continues to modify the basis of compliance for such a tool by considering two
entities of many ACGs:

• Entity 1. The library of elementary symbols (e.g., code primitives or basic functions) that
contain basic symbols that contain the source code associated with implementing the
function of each elementary symbol.

 18

• Entity 2. The architect (e.g., tool logic and program constructor) that reads the software
specification and selects the association to the elementary symbol and may insert the
corresponding source code for each selected symbol.

In the CAST paper, each entity has different applications of DO-178B-related guidance. A
similar approach could be taken for software components in a HUMS. Similarly, two entities
should be considered for HUMS ground-based COTS components: (1) COTS components not
directly related to the manifestation of vehicle part action (discussed in the following section)
and (2) COTS components directly related to such action (discussed in following section). For
example, a COTS Visual Basic (VB) program written in an Excel spreadsheet that implements
vehicle part action algorithms should have a different scope of verification than a COTS OS.

4.5.3.1.3 Commercial Off-The-Shelf Not Related to Vehicle Part Action.

Many COTS software components exist that do not have part-life, decision-making authority.
Examples are OSs and communication software. Certainly, this class of COTS software is
simply enabling software that permits the HUMS data to be operated on by other software.
Section 6 provides a brief look at the objectives of DO-178B to determine which are pertinent.

4.5.3.1.4 Commercial Off-The-Shelf Directly Related to Vehicle Part Action.

A focus for ground-based COTS components in a HUMS is correctness and accuracy for the
predicted vehicle part action. Compiler libraries, database software, and other computationally
intensive COTS software must have many more applicable DO-178B objectives than not-
directly-related COTS components. Arguably, one could state that all objectives must be applied
according to a criticality level as determined by the FHA. But, as noted with the publication of
DO-278, not all ground-based systems align well with the objectives for assurance levels.
Hence, a new assurance level was created (AL4).

In fact, in many areas of ground-based software operations, the accountability of these objectives
possibly should be on a case-by-case basis. A preferred method of determining the applicability
of the DO-178B or DO-278 objectives may be to perform a detailed analysis of each system
component for all the objectives of these guidance documents and provide a rationale for why or
why not an objective needs to be met. A deeper research investigation into this technique is
performed later in this document on two components of the demonstration portion of this study
(see section 6).

4.5.3.1.5 Independent Verification Means.

Multiple-version redundancy has been offered in the HUMS ACs as a means for independent
verification of ground-based COTS hardware and software equipment. The use of multiple
versions for fault tolerance has been discussed in the past. Leveson [22] states that multiple-
version redundancy has been shown to have no statistical basis and cites six separate sources
supporting this claim. The issue of independence and redundancy of software needs more
investigation.

 19

4.5.3.2 Alternate Approaches for Acceptance of COTS Software.

Certainly, the guidance in DO-178B is a recognized means of compliance. DO-278, discussed
elsewhere in this document, provides additional guidance recommendations with respect to
COTS software. DO-278 also has specific guidance on COTS that goes beyond the scope of
DO-178B.

DO-248B attempts to clarify portions of DO-178B including several discussions on COTS
acceptability, but provides no new or additional guidance material beyond DO-178B. DO-178B
is highly process-based, yet a trend appears to be leaning toward more product-based analysis.
When one considers permitting modular certification or approval of components as Rushby
suggests in reference 23, alternate approval methods will be needed. A variety of approaches
can aid in the determination of the acceptability of a COTS component. An area of future study
for this research would be to assess alternate means, as listed below for each objective, and
determine the viability of making such an analysis process part of the suggested guidance of
DO-178B or DO-278.

• Wrappers
• Calculation Reasonable Checks
• Data Input Reasonable Checks
• Full Up Part-life Models
• Partitioning
• Isolation
• Product Service Experience
• Prior Assurance
• Process Recognition
• Reverse Engineering
• Restriction of Functionality
• Audits
• Inspections
• Formal Methods
• Fault Detection and Accommodation
• Monitoring—Performance, Safety, Activity
• Fail-safe Architectures
• Adaptive Part Model Predictions—recent confidence index

5. CURRENT AND EMERGING INDUSTRY APPROACHES TO SECURITY AND
SAFETY.

This section considers some of the current security and safety trends for COTS software and
their relationship to HUMS.

 20

5.1 SECURITY APPROACHES.

System security is closely related to system safety; both deal with threats or risks to the system
and both involve protection against losses, although the types of losses involved may be
different. Faults inherent to the system can be removed over a period of time in system testing,
but system security is a factor that needs to be considered even when the system is in a
functional stage, as negligence in security may compromise system safety.

Security focuses on malicious actions of outside or inside attackers. System security is different
from safety in that it protects the system from the deliberate attacks of malicious attackers, while
system safety deals with protecting the system in case of faults or failures that are unintentional
(i.e., not deliberate). The primary emphasis in security has been on preventing unauthorized
access to classified information. However, it also includes unauthorized disclosure,
modification, and withholding of data.

The following sections introduce various security mechanisms (i.e., cryptography, access
security, intrusion detection, information and data protection) and consider their potential use in
the HUMS context.

5.1.1 Cryptography.

Cryptography is the art of creating and using cryptosystems. A cryptosystem or cipher system is
a method of disguising messages so that only certain people (the intended recipients of the
message) can see through the disguise. The original message that is disguised is called plaintext.
The disguised message is called ciphertext. Encryption refers to the method used to convert
plaintext into ciphertext. Decryption refers to any procedure to convert ciphertext into plaintext.
A cryptosystem is usually a whole collection of algorithms. Cryptosystems come in two
different versions: secret key cryptosystems and public key cryptosystems. This section
describes the basics of cryptography and the applications of cryptography that are relevant to the
HUMS.

5.1.1.1 Secret Key Cryptography.

Secret key cryptography is sometimes referred to as symmetric cryptography [24]. In this
traditional form of cryptography, the same key is used for encryption and decryption, as shown
in figure 4. Message Authentication Codes (MAC) use secret keys to provide authentication.

Encryption Decryption

Key

Plaintext Ciphertext Original
Plaintext

FIGURE 4. SYMMETRIC KEY CRYPTOSYSTEM

 21

Secret key cryptography has certain advantages over public key cryptography, its higher speed
being one. However, secret key cryptography requires that the sender and receiver of a message
agree on a secret key, and this is often a difficult task due to eavesdropping.

The most common techniques in secret key cryptography are block ciphers, stream ciphers, and
MACs. Each is discussed below.

5.1.1.1.1 Block Ciphers.

A block cipher is a type of secret key encryption algorithm that converts a block of unencrypted
data of fixed length into a block of encrypted data of the same length. A secret key is used for
this transformation. Decryption is performed using the same secret key. The fixed length of
unencrypted data (plaintext) and encrypted data (ciphertext) is termed the block size.

5.1.1.1.2 Stream Ciphers.

A stream cipher is a type of secret key encryption algorithm. As opposed to block ciphers that
operate on blocks of plaintext, stream ciphers transform smaller units of unencrypted data
(generally bits into the ciphertext).

A stream cipher generates a key stream (i.e., a sequence of bits used as a key). Encryption
generally involves combing the key stream and the plaintext, which is quite commonly a bitwise
XOR operation.

5.1.1.1.3 Message Authentication Code.

A MAC involves the use of an authentication tag generated by applying a secret key and an
authentication scheme to a plaintext message. Unlike digital signatures, MACs cannot be
verified by receivers that do not possess the secret key used to create the MAC. As shown in
figure 5, a sender uses G (key, message) to generate a tag. This tag is appended to the message
and is transmitted. If an attacker succeeds in intercepting the message, he or she modifies the
message and tag. The modified message and tag then reach the receiver, who uses G (message′,
key) to determine whether or not the contents have been modified.

MAC Generator
key

message,
tag

message

Sender

Attacker

 message,

Receive

MAC Generator/
Comparator

message’,
tag’

modification
detected

 message’,

 key

FIGURE 5. MESSAGE AUTHENTICATION CODE

 22

5.1.1.2 Public Key Cryptosystems.

In secret key cryptography, the sender and receiver of a message use the same secret key; the
sender uses the secret key to encrypt the message, and the receiver uses the same secret key to
decrypt the message.

A key exchange scheme is required for the sender and receiver to agree on the same key. If an
eavesdropper is able to intercept the key during exchange, all transmissions encrypted using this
key will be prone to passive attacks on the confidentiality of the data.

To deal with key management issues, Whitfield Diffie and Martin Hellman introduced the
concept of public key cryptography in 1976. Public key cryptosystems have two primary uses,
encryption and digital signatures. The system involves the private key and the public key.
Private keys are kept secret while public keys may be disclosed to anyone. Public key
cryptography can be used not only for privacy (encryption), but also for authentication (digital
signatures) and other various techniques. Figure 6 shows a public key cryptosystem that uses
different keys for encryption and decryption.

Encryption Decryption

Encryption Key Decryption Key

Plaintext Ciphertext Original
Plaintext

FIGURE 6. PUBLIC KEY CRYPTOSYSTEM

Public and private keys are linked mathematically. Since the public key is not kept secret, an
attacker may try to derive the secret private key using the public key. However, in public key
cryptosystems, the task of deriving the private key from the public key is made difficult. For
instance, some public key cryptosystems like RSA (Rivest, Shamir, Adelman) are designed such
that deriving the private key from the public key requires the attacker to factor a large number.
This derivation is computationally infeasible. Encryption and digital signatures are further
discussed below.

5.1.1.2.1 Encryption.

Assume A and B to be two entities that wish to communicate. Suppose A wishes to send a
message. A looks up B’s public key, encrypts the plaintext with B’s public key, and sends the
ciphertext to B. Confidentiality is achieved, as only B, who has the private key, can decrypt the
message.

 23

5.1.1.2.2 Digital Signatures.

Again, assume A and B to be two entities that wish to communicate. To sign a message, A does a
computation using its private key and the message itself; i.e., A encrypts the message using its
private key. The encrypted output is called a digital signature and is attached to the message. To
verify the signature, B does a computation that involves the message, A’s signature, and A’s
public key. Using a simple mathematical relation, B decrypts the digital signature using A’s
public key. If the decrypted result matches the original message, then A’s signature is verified to
be genuine. Otherwise, the signature is considered fraudulent, or the message may have been
modified.

5.1.2 Cryptography in the HUMS Context.

Cryptography should be used in HUMS for achieving security objectives. Different forms of
encryption techniques can be used to make ACARS secure, but this requires enhancements to the
existing ACARS infrastructure.

If cryptography is used, the secure ACARS runs as an application; hence, it is independent of
underlying hardware. The secure ACARS application runs over the existing infrastructure,
which interprets the secure transmissions as shown in figure 7. Thus, the secure transmission is
invisible to the user.

Secure ACARS
application

Existing airborne
applications

Secure ACARS
application

Existing terrestrial
applications

Airborne Infrastructure Ground station

Air - Ground Network

FIGURE 7. SECURE ACARS

The cryptography protocol works as follows, if integrated into HUMS (as shown in figure 7):

• Before data transfer can begin, a secure path must be established. That is, both sender

and receiver must be unambiguously identified to each other. This is called the
Handshake phase. The airborne system sends its identity, time of transfer, intended
ground station, digital signature, etc., in a message to the ground station.

 24

• The ground station, in turn, responds with another message comprised of the identity of
the ground station and a random number used to generate a session key. This message is
encrypted and can be decrypted only by the private key of the airborne system.

• Using this random number, a session key is established, which is then used to encrypt all

data transfers. In this way, the system uses a combination of symmetric (private) as well
as asymmetric (public) cryptographic techniques to ensure secure data delivery.

• If a breach is detected at any time (for example, if checksum validations on transmitted

data fail or if authentication fails), either party can terminate the session, and
transmission can revert back to voice-based communication. Once the failure is resolved,
secure ACARS operations may resume.

5.1.3 Access Security.

Every system must support the ability to protect data and system resources from intrusions,
modifications, theft, and unauthorized disclosures. As data in any database is related by
semantic relationships, damage in a database environment can affect the entire information
system.

Categories of security breaches include [25]:

• Unauthorized data observation. Unauthorized data observation results in a disclosure of

information to users not entitled to gain access to such information.

• Incorrect data modification. Incorrect modifications of data, either intentional or

unintentional, result in an inconsistent database state.

• Data unavailability. When data is unavailable, information crucial for proper functioning

may not be readily accessible when needed.

Therefore, a complete solution to the data security problem requires addressing issues of secrecy,
integrity, and availability.

Authentication deals with the problem, Who is the user? Access control deals with the problem,
What can the user do to a certain resource? Authentication and access control together form an
authorization mechanism; hence, the two techniques are discussed together below. For HUMS,
all the mechanisms for authentication and access control can be deployed at the gateway, which
separates the HUMS database subsystem from other subsystems.

5.1.3.1 Authentication.

An authentication mechanism attempts to provide assurance of the claimed identity of an entity.
Whenever any entity tries to access HUMS, that entity should first be authenticated. Only if the
entity can be authenticated properly should it be allowed to access and modify the data.

 25

Authentication methods generally rely on one or a combination of the following principles:

• Something known: e.g., password, pin, mother’s maiden name.

• Something possessed: e.g., smart card, key, ID badge.

• Some immutable characteristics: e.g., fingerprints, voice scan, retina scan (biometric
identifier).

In the case of HUMS, entities that require access to the database are:

• Secure ACARS network. It transfers airborne data from the aircraft to the ground-based

gateways in a secure manner. This data needs to be stored in the HUMS database
without compromising data security and integrity.

• Applications that require HUMS data for use and maintenance purposes. The
applications may access data over a secure/private network connection, a virtual/private
network, or over an unsecured/public network (Internet).

HUMS database subsystems can assume that the encrypted data it receives via the secure
ACARS is authenticated. But this encrypted data needs to be checked for its integrity, since it
could be tampered with during transmission through the network.

5.1.3.2 Access Control.

Access control mechanisms ensure data secrecy. Whenever an entity tries to access data, the
access control mechanism checks the rights of the entity against a set of authorizations. An
authorization states which user can perform which action on which object. Data integrity is
jointly ensured by an access control mechanism and by semantic integrity constraints. Whenever
an entity tries to modify some data, the access control mechanism verifies that the user has the
right to modify the data; the semantic integrity subsystem verifies that the updated data is
semantically correct (i.e., the system is in a stable logical state).

Access control mechanisms generally rely on authentication mechanisms and encryption
techniques for proper functioning. Access control policies can be broadly classified into two
categories: Discretionary Access Control and Mandatory Access Control [25]. Each is
discussed below.

5.1.3.2.1 Discretionary Access Control.

The discretionary access control policy governs the access of entities to data on the basis of
entities’ identity and authorization rules. Such mechanisms are discretionary in that they allow
entities to grant other entities authorization to access data. An important aspect of discretionary
access control is related to authorization administration policy, which refers to the function of

 26

granting and revoking authorization. Some common authorization administration policies are
listed below [25]:

• Centralized administration. Some privileged users may grant or revoke authorizations.

• Owner-based administration. The creator of a data object issues grant or revoke

operations. Due to this characteristic, this category allows decentralized administration.

• Joint-based administration. Several users are jointly responsible for authorization

administration.

Authorization of each access hit depends exclusively on the existence or absence of an
authorization rule, without taking into account the confidentiality level of the data or the level
each entity can access. OSs generally implement these policies.

Thus, a high degree of flexibility characterizes discretionary access control policies. However,
these policies do not impose any control on how information is propagated and used after
authorized users have accessed information.

5.1.3.2.2 Mandatory Access Control.

The mandatory access control policy classifies entities and data into different security levels.
The main characteristic of mandatory access control policy is that an access is authorized if a
certain relation exists between the entity security level and the security level of the object to be
accessed. Data has appropriate security levels, irrespective of the users who wish to access it.
Multilevel database management systems can support mandatory access control through
different security levels in the data and different accreditation levels for users.

Mandatory policies are rigid compared to discretionary policies because they require a strict
classification of entities and data objects into security levels. However, they ensure a high
degree of protection in that they prevent any illegal flow of information.

5.1.3.3 Variations in Access Control Policies.

Different variations of the above-mentioned access control policies exist that are suitable to
different applications. Examples of such variations are:

• Negative authorization. Explicit denials can be expressed as authorization rules.

• Temporal duration of authorization. Permissions can be specified for specific time

intervals.

• Role-based access control. In this policy, access permissions are associated with roles,

and users are made members of the roles. The roles represent each functional group of
the system; grouping in each one represents users with similar functions and

 27

responsibilities. Thus, operations that a user can perform are based on the user’s role.
This policy facilitates administration and is a natural way to represent hierarchies in the
system.

5.1.3.4 Authentication and Access Control in HUMS.

An authentication and access control module in HUMS should have the following characteristics
[26]:

• High-assurance security. Applications should provide high confidence through strong

security services for confidentiality, data integrity, user-based authentication, and
nonrepudiation. System assurance should be limited only by the underlying COTS
platform and applications. This implies that COTS components should be chosen such
that from a security perspective, their limitations are within acceptable limits of the target
HUMS application.

• Secure submissions and retrieval. Data must be protected while allowing authorized

users to access and modify information.

• High usability. A uniform user interface should be used to increase user acceptance and

efficiency while reducing the training costs of high-security solutions.

• Scalability. A secure solution must be extendable to meet ever-increasing throughput

and storage requirements.

• COTS products use. Secure solutions should employ COTS-based hardware and

software, where possible, to minimize redevelopment, testing, and support efforts,
without compromising security.

5.1.4 Access Control in the HUMS Context (An Example).

A firewall is a set of mechanisms that can enforce a network security policy on communication
traffic entering or leaving a network policy domain [27]. Current firewall technologies and low-
cost, powerful COTS hardware and software computing platforms lend themselves to a solution
using standards-based cryptographic algorithms and mechanisms. As discussed in the previous
sections, this secure network architecture provides secure data access over trusted or untrusted
networks and high-assurance access control in a highly usable, flexible, and scalable
manner [26].

The architecture in figure 8 is an example of a HUMS that is built using a commercially
available, application-level firewall and other COTS machines. The systems, which use standard
OSs, act as gateways between the users and the servers. The firewall mediates access between
multiple network domains with trusted HUMS servers. Only administrative user logins are
permitted on this trusted server domain. Thus, the architecture provides strong protection for
sensitive data by physically separating HUMS servers from other users and servers on the
network.

 28

ACARS Network

Firewall
Technology

User A

User B

HUMS Server

Protocol
Gateway

Cryptographic
Gateway

Trusted DomainUntrusted Public
Network

FIGURE 8. SECURE NETWORK ARCHITECTURE [25]

Data flow transmitted over the secure ACARS network can be assumed to be authenticated.
This encrypted data consists of actual data sent by onboard sensors and message digests
computed on the actual data using standard algorithms. The firewall allows data from the secure
ACARS network to be passed to cryptographic gateways. Data is checked for its integrity using
message digests. If the message digest computed by the cryptographic gateway is different from
the message digest in the data, then the data is discarded. Otherwise, the gateway forwards the
data to the appropriate HUMS server.

A protocol gateway, such as a web server, located on an untrusted network domain presents the
user interface on client workstations. The user completes a secure data submission or retrieval
request and encrypts and digitally signs the request using cryptographic standard algorithms. In
addition to or instead of a digital signature, the user may provide other forms of authentication,
such as biometrics.

A firewall relays the data submission or retrieval request to the HUMS server within a trusted
domain through cryptographic gateways. When the request reaches the trusted domain, the

 29

cryptographic gateway verifies the digital signature and/or biometric template and decrypts the
transaction. The architecture supports the Public Key Infrastructure mechanism.

After successful authentication, the cryptographic gateway can check the requested action and its
originator against its access control list (ACL) and can determine if the user is authorized to
perform the requested action. If the authentication fails, or if the user’s request cannot be
authorized, the cryptographic gateway would reject the request immediately and log this rejected
request for subsequent monitoring.

Authenticated requests from authorized users are forwarded to HUMS servers for further
processing. The server sends the result of the request to the cryptographic gateway, where it is
encrypted for the originating user, digitally signed, and relayed back to the originator.

Network access to the trusted domain is strictly transaction-oriented and must be digitally signed
by the individual user making the request. The security policy for this architecture permits no
direct network logins to HUMS servers (except for administrative access). This policy is
enforced by a firewall technology that mediates access between the different network domains,
allowing only transaction-oriented communication addressed to the cryptographic gateway to
pass through to trusted server domain. Because administrative logins are also protected by
strong authentication, the firewall policy can be used to control the perimeter of the trusted
server domain.

Authorizations are performed through the use of ACLs maintained on the cryptographic gateway
located on a trusted server domain. ACLs are files that maintain information on protected
HUMS resources and the individual users who may access them. Firewalls prevent direct
connections to the machines on trusted domains. Also, firewalls route all transactions to the
cryptographic gateway to be verified and authorized against ACLs before being processed by the
server. Therefore, only the administrator can access ACLs; regular users cannot modify them.

5.1.5 Intrusion Detection.

An Intrusion Detection System (IDS) is defined as an application or process, which monitors an
environment for the purpose of identifying activity that indicates system abuse, misuse, or
malicious attack [28].

This section discusses popular approaches to IDSs and describes the role they may play in the
security architecture used to protect HUMS.

Systems are vulnerable to inside and outside attackers. Inside attackers are users with access to
the systems. Outside attackers are malicious attackers who try to get through the security
mechanisms and gain access to information and resources. Attackers use several different tools
and methods to break a system. A good description of different types of attacks can be found in
reference 29. Several security mechanisms can be used to fortify the security of the HUMS, for
example, firewalls and Virtual Private Network gateways. However, weaknesses and bugs in
OSs and network protocols are continually exploited by system attackers. Thus, no system is
unbreakable or 100 percent secure.

 30

An IDS provides a second line of defense to aid the intrusion prevention techniques. If an
attacker is successful in breaking into the system, the IDS can possibly detect the attack and
signal an alarm. A good analogy would be home security systems. Home security systems
signal an alarm when an intruder breaks in and acts as a second line of defense in addition to the
preventive techniques (e.g., locks on doors and windows).

Because of their ability to detect attacks, IDSs are now an essential component of computer
security. Some IDSs can detect an attack in real time and can actually take some action to stop a
particular attack from inflicting further damage. Other IDSs can provide information about the
attack that can be used to prevent those attacks from happening again. Advanced IDSs can
detect never-before-seen attacks, but the more typical IDS detects attacks that are previously
known [30].

The following sections discuss the most popular approaches used in the design of IDSs.

5.1.5.1 Signature-Based Approach.

The signature-based approach to intrusion detection involves looking at an invariant sequence of
events that match a known type of attack. For example, a “Ping of Death” is a DoS attack. This
attack involves sending an oversized ping packet that causes the target machine to reboot. A
signature for this attack would have a rule: “A ping packet greater that 64 Kilobytes is an
attack.” Signatures can be created for the various types of attacks that are already known in a
variety of ways (for example, hand translation of attack manifestations and automatic training
and learning).

However, the signature-based approach has problems detecting truly novel attacks. In addition,
false-alarm rates for these systems are very high because it is difficult to create signatures that
successfully detect attacks while allowing normal traffic to flow through [31]. Finally, when
new attacks are discovered, signatures must be created for the attacks and the system must be
updated.

5.1.5.2 Anomaly-Based Approach.

Anomaly-based detectors have an advantage over signature-based detectors because they are
able to detect novel attacks. This approach to intrusion detection involves creating statistical
models for the behavior of the system. The IDS will send out an alarm whenever it observes an
anomaly (that is, behavior that deviates from the normal behavior of the system).

The anomaly-based approach involves an initial training phase in which the system creates a
model of the user or network. After this training phase, the IDS, upon observing behavior that
deviates from the normal, generates an alarm.

Anomalous behavior does not always mean that an attack is underway, so anomaly detection
systems should be carefully tuned to avoid high false-alarm rates. This requires that the activity

 31

of the system or user be stable over a period of time and not overlap with the activities of an
intruder [32].

A user with very regular habits will be easy to model; therefore, the behavior of an attacker will
likely deviate significantly from the usual behavior and an attack will be detected. However, a
system administrator’s actions will vary considerably, and it will be more difficult to distinguish
attacker from administrator. Also, a hacker may slightly deviate from what is perceived as
normal behavior by the intrusion detection system for a long period of time, thus staying
unnoticed. Another disadvantage is the large storage requirement for the statistical model that
represents normal behavior.

5.1.5.3 Specification-Based Approach.

The specification-based approach to intrusion detection can detect new attacks that involve
improper use of the system or application programs. This approach involves specifying normal
behavior for the system and application programs. The audit records on a host are then
examined to detect if there are any variations from normal behavior. Specification-based IDSs
can provide very low false-alarm rates and detect a wide range of attacks, including many forms
of malicious code such as Trojan horses and other viruses. These attacks exploit race conditions
and take advantage of improper synchronization in distributed programs.

However, this approach is difficult to apply, because security specifications must be written for
all programs to be monitored. Writing security specifications is difficult because system and
application programs are constantly updated. The specification-based approach is best suited to
certain critical programs (system or user programs) that are considered prime targets of the
system.

5.1.5.4 Bottleneck Verification Approach.

The bottleneck verification approach to intrusion detection can be applied when only a few ways
to transition from a certain set of states to another set of states are possible. The transition from
user to superuser in a shell is one example. Whenever a transition from a user to superuser state
happens, a bottleneck verification-based system will check whether or not the superuser
command was indeed used to change from user state to superuser state. Thus, even if some
novel method was used to carry out the transition, the attack will be detected. The bottleneck
verification scheme therefore has the capability to detect new attacks.

5.1.5.5 Host-Based Approach.

The host-based approach to intrusion detection is deployed on a host. The OS on that host
collects audit and log data, which is analyzed by the IDS to detect intrusions.

In cooperation with the host OS, the IDS can also monitor the interaction of various running
applications to detect attacks.

 32

The disadvantage of this approach is an attack that allows the attacker to gain control of the
targeted machine may allow the attacker to disable the operations of the IDS. But the approach
can help uncover attacks that do not create any externally observable behavior.

5.1.5.6 Network-Based Approach.

The network-based approach to intrusion detection looks at network traffic to detect attacks.
The detection system in no way affects the performance of the protected hosts, and it allows
simultaneous monitoring of a number of hosts. However, the approach suffers from performance
problems with increasing network speeds [28].

5.1.6 Intrusion Detection Within a HUMS Context.

Of all the intrusion detection approaches mentioned above, there is no single best approach. For
the HUMS, a combination of these approaches should be used and tailored to the needs of the
system.

In selecting and deploying an IDS, certain selection criteria should be considered [33]. The
following is a short summary of some selection criteria requirement categories:

• Detection. Detection requirements address various functional and security issues

regarding detection of intrusions.

• Response. This set of requirements addresses various activities that are initiated when an

intrusion is detected. The requirements address the degree to which the IDS can respond
to intrusion related information.

• Deployment. Various practical issues, such as installation, platform support, and

interoperability, are encompassed in this set of requirements.

Requirements in each category are associated with degrees of compliance. The criteria could be
used as a basis for selecting an IDS that matches the security requirements of the HUMS system.

In addition to evaluating existing IDSs to determine which best fit the detection, response, and
deployment criteria, an approach that incorporates anomaly detection and signature-based
systems might best suit the security needs of the HUMS system. The detection system would be
able to detect known and novel attacks. Host-based IDSs would be deployed at all the entities
involved in the HUMS system, and network-based IDSs would be deployed at strategic network
locations (i.e., gateway and access points). The host-based system would monitor audit logs
generated by the OS to detect malicious activity by looking for the presence of known signatures
and aberrations from normal profiles. The network-based IDS would look at network traffic for
known and novel attacks.

Specification-based intrusion detection approaches should be employed for prime targets in the
HUMS. Security specifications should be written and continuously updated to facilitate

 33

specification-based detection. Prime targets in HUMS include critical components of HUMS,
which should be chosen based on hazard and vulnerability analysis.

5.1.7 Information and Data Protection.

This section describes information verification methods that can be used to ensure that the data
has not been corrupted during storage. Data stored in the HUMS database may be modified
either accidentally or by malicious attackers. Hash functions can verify correctness. Audit trails
can trace violations of security policies back to individuals.

5.1.7.1 Hash Functions as Information Verification Methods.

Hash functions act on some input to produce new output. For example, in y = f (x), f () is a hash
function that, on x as input, produces y as output. One-way hash functions are a special class of
hash functions with the following properties [24]:

• Given x, it is easy to compute y.
• Given y, it is hard to compute x, that is, computing x = f -1 (y) is difficult.
• Given x, it is hard to find another x′ such that f (x) = f (x′)

One-way hash functions are also called message digests, as they take the original message as
input to produce output digest hash value. All modern hash algorithms produce hash values of
128 bits or higher. Hash algorithms also have the property that even a slight change in the input
string causes the hash value to change drastically. This is called an avalanche effect. Thus, even
if a single bit is flipped in the input string, at least half of the bits in the hash value will flip as a
result.

Since it is computationally infeasible to produce a message that would hash to a given value or
to find two messages that hash to the same value, the hash value of a message can serve as a
cryptographic equivalent of the message. This makes a one-way hash function a central notion
in public key cryptography, where it can be used to ensure data integrity.

Hash functions that do not use secret keys but are used for ensuring data integrity are called
Modification Detection Codes (MDC). Another class of hash functions, which use a private key
and provide both data integrity and origin authentication, are called MACs.

Examples of widely used MDC hash algorithms are Message Digest version 5 (MD5) and Secure
Hash Algorithm (SHA). MD5 produces 128-bit hash value, while SHA can produce hash value
of length 160 bits [24].

5.1.7.2 Audit Trails.

An audit trail is a series of records of events that take place in a system. The events may be
related to the OS, application programs, or users of the system. Audit trails enable a user to
identify and verify the activity of an information system.

 34

Trusted systems must maintain audit trails of system activity to ensure that actions that violate
the security policy of the system can be traced back to accountable individuals [34]. Even when
a deliberate, malicious attack is not suspected, audit trails can be useful in restoring data integrity
following unintentional mistakes or software failures.

A monitoring system generates audit trails. They have great importance in computer security for
the following reasons:

• Individual Accountability. Audit trails can be used to detect insider attacks, which are

malicious activities by authorized users of the system. They can be very difficult to
detect because the attacker has a legitimate way to get into the system. Audit trails may
deter inside attackers.

• Reconstructing Events. When a system is successfully attacked, it is a good idea to

figure out exactly what happened. This includes determining the state the system was in
before ascertaining how attackers compromised security measures. If it is not possible to
determine who or what used the system, there is little chance of ascertaining what
occurred to breach the security. Without audit trails, the exact same vulnerability would
stay open, without any improvement in the system to prevent future attacks.

• Problem Monitoring. Audit trails may also be used to monitor the system to detect any

abnormal activities. Disk failures and overuse of resources may be detected, for
example.

• Intrusion Detection. IDSs identify attempts to penetrate a system and gain unauthorized

access. Audit trails can help in detecting system misuse and can serve as a database for
the anomaly detection engine of an IDS [34].

If an audit trail is to aid in tracing back an event after the fact, it must continuously record many
system events at a fine level of detail. This results in a large volume of data, most of it useless in
tracing attacks. However, data must be generated and stored in the hope that, if an abnormal
event takes place, the few critical records needed to trace the event will be present.

A simple model of an auditing system is shown in figure 9 and consists of:

• Audit Data Collector. This is responsible for collecting the audit data.

• Audit Data Analyzer. This is responsible for analyzing the audit data. The format to be

used to transfer data from the collector to the analyzer is an ongoing research effort in
academia.

 35

Audit Data Collector
(monitor operating system, user

activities, and application programs)

Audit Data Analyzer
(analyze data from collector)

FIGURE 9. MODEL OF AN AUDITING SYSTEM

An audit trail should have a standard format, which helps overcome incompatibility and
interoperability issues. Exchange of audit data from audit sources on different systems and
collaborative analysis of data in a distributed environment is greatly facilitated by a standard
format. Some of the proposed standards for the format of audit trails are Bishop's Standard
Audit Trail Format, Normalized Audit Data Format, and Sun Solaris Common Audit Trail
Interchange Format for UNIX®.

The content of the audit trails also needs to be standardized. Interoperability issues that arise
from analyzing data from different sources, particularly in a distributed environment, can be
solved by use of these standards. Some of the proposed standards are Trusted Computer System
Evaluation Criteria and Security Criteria for Distributed Systems.

5.1.8 Data Integrity Assurance in HUMS Context.

The following considers data integrity of a HUMS.

In a HUMS, in which data is being transmitted over the ACARS network, all data to be
transmitted is given as an input to the MDC hash algorithm. The message digest for that data is
then calculated and encrypted along with the actual data. The whole encrypted message is sent
over the network.

At the other end, a cryptographic gateway in a trusted domain decrypts the entire message to get
the actual data and message digest. The gateway then computes the message digest on the actual
data and verifies it with the message digest received over the network. The MDC hash algorithm
property ensures that even if a single bit of the message is altered, the gateway will get a
message digest different from the message digest of the original message.

Therefore, even if an intruder were able to alter the message, the gateway would detect it, and
the message could be discarded. Hence, the gateway can alert the monitoring system and take
appropriate action, like asking for retransmission of the message.

The same mechanism ensures data integrity for requests coming from users on an untrusted
network and for responses to these requests by the HUMS server. A cryptographic gateway
checks the message digest for requests from the users. Only if the message digest computed by

 36

the gateway matches the message digest in the message is the request considered further;
otherwise, it is blocked. Also, when sending the response back to the user, the gateway
calculates and appends the message digest to the response before encrypting it. The user can
ensure that data integrity is maintained on his side by checking this message digest.

Audit trails should be used to log all activities, including source and number of messages being
transmitted over the ACARS, number of retransmissions in case of failures, client requests,
database read/write requests, and so on. This will aid in analyzing patterns of access to the
HUMS data in case of a security breach and also during general maintenance activities.

5.2 SAFETY APPROACHES AND RISK MITIGATION.

In part, section 4.1.3 of DO-278 states: “Risk mitigation techniques may be used to reduce the
CNS/ATM system’s reliance on the COTS. The goal of these mitigation techniques is to
accommodate the assigned failure condition classification by reducing the effect of anomalous
behavior of COTS on the CNS/ATM system function. Risk mitigation techniques may be
achieved through a combination of people, procedure, equipment, or architecture. For example,
architectural means may involve partitioning, redundancy, safety monitoring, COTS safe subsets
by the use of encapsulation or wrappers, and data integrity checking” [2].

Stroup, et al. [14] identified four activities associated with an effective risk mitigation strategy
for incorporation into a system specification. These activities are hazard identification, assessing
hazard effect and risk level, achieving requirements balance, and incorporating a balanced set of
requirements into system specifications.

5.2.1 Hazard Analysis of the HUMS.

Figure 10 represents a model used to identify hazards from a safety perspective.

Hazard
Adverse event that occurs as

a result of the cause(s)
- A condition that is

prerequisite to an accident

- Mission Need Statement
- Concept of Operations
- Architecture (NAS)
- Requirements

*Hazard

Hazard Analysis Model (Safety)

*Cause(s)
- Failures
- Malfunctions

*System State
- Condition
- Exposure
- Environment

* Items are tracked in
the FAA System Safety

Working Group's
Hazard Tracking and

Risk Resolution
(HTRR) Database.

FIGURE 10. HAZARD ANALYSIS MODE [13]

 37

The mission need statement, concept of operations, requirements, and NAS architecture are
considered while documenting a list of hazards. Also taken into account are the factors that
cause the hazards and the different states in which that system is expected to perform, their
environmental impact, and so on. Table 3 provides an example of a hazard analysis performed
on a HUMS. Table 4 should be read as follows:

• Column 1 (Number): Numbers the hazard listed in the table.

• Column 2: Lists the particular subsystem being considered.

• Column 3 (Hazard): Describes the hazard under consideration.

• Column 4 (Cause Description): Provides a short description of the cause of the hazard.

• Column 5 (Effect Description): Provides a short description of the effect of the hazard.

• Column 6 (Remedial Technique): Provides a design technique that can detect and/or
address the hazard under consideration.

TABLE 3. SAMPLE HAZARD ANALYSIS FOR A HUMS

Causal Analysis
No.

HUMS
Subsystem

Under
Consideration

Hazard
(Critical Event) Cause Effect Remedial Technique

1

Noise on
communica-
tion channel.

Important
data can be
corrupted.

Message digests should
be used to ensure data
integrity.

2 ACARS Data output from
the ACARS
network could be
in an incorrect
format.

Noise bursts
during
transmission
could have
corrupted the
data.

Since the
HUMS
cannot
understand
the format,
the packet
will be
rejected.

Format transformation
mechanisms should be
thoroughly tested. In
case of dropped
packets, retransmission
should be requested.

3 ACARS Data itself could
be incorrect.

The onboard
sensors may
become
faulty.

Erroneous
data is
transmitted.

Range checks or other
forms of checks should
be employed on all
received data, e.g., a
device that measures
height or temperature
cannot show a very
steep change in a short
interval of time.

 38

TABLE 3. SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued)

Causal Analysis
No.

HUMS
Subsystem

Under
Consideration

Hazard
(Critical Event) Cause Effect Remedial Technique

4 ACARS It can cease to
function.

An onboard
incident damages
the device or the
communication
link.

No data
transmitted
until new/
backup unit
takes its place.

Any lag/delay in
messages received
should be logged and
flagged.

5 ACARS Data sent to
unintended
recipient.

Recipient not
authenticated.

Unauthorized
access to
important
data.

Authentication and
encryption technique
should be used.

6 ACARS Data transmission
is interrupted.

Receiving
substation may be
out of service.

Data sent is
not received
by the
receiving
station.

Retransmission is
tried once and then
data is stored onboard.

7 ACARS Either party
claims not to be
part of the
communication.

A non-
repudiation
mechanism is not
used.

Sender/
receiver may
claim that they
did not
send/receive
the data.

Digital signature is
used for the
communication.

8 ACARS Receiving ground
station goes down

The COTS
software used in
the ground
systems crashes.

The receiving
stations will
not be able to
receive
messages,
leading to lost
messages.

The ground station
software should be
tested thoroughly. In
case it is down, there
should be a provision
to store HUMS data
on board.

9 HUMS
Database

The database
goes down.

Power failure,
database fails
during execution.

Data cannot be
accessed.

A backup
module/power supply
should be present to
take over in case of an
emergency.

 39

TABLE 3. SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued)

Causal Analysis
No.

HUMS
Subsystem

Under
Consideration

Hazard
(Critical Event) Cause Effect Remedial Technique

10 HUMS
Database

The database
goes down and
when brought up
again, it is in an
inconsistent
state.

Efficient
check
pointing
mechanism
not employed.

The data is in
an inconsistent
state.

Prior tested check
pointing mechanism
should be employed.
Redundancy should be
used for alternate
forms of check
pointing.

11 HUMS
Database

Attempt can be
made to make
unauthorized
access to the
repository.

Malicious
user trying to
gain access.

Intruders can
read/write data
for which they
have no
authority.

Authorization through
some form of
encryption is required
for authentication.

12 HUMS
Database

Attempt can be
made to access
data with no
permissions.

Malicious
user trying to
gain access.

Intruders can
read/write
data.

Check access rights
for users before any
read/write.

13 HUMS
Database

HUMS
incorrectly
calculates the
lifetime or
maintenance
decision related
to one or more
parts.

Human or
system error

Incorrect data
will be stored
and/or
transmitted.

Periodic manual
checks should also be
performed.

14 HUMS
Database

Parts are
incorrectly
associated with
the wrong
vehicle.

Human or
system error

Incorrect data
and/or
associations
between data
will be stored.

Periodic manual
checks should also be
performed.

15 HUMS
Database

Data is corrupted
during storage.

Noise bursts
or power
surges.

Incorrect data
accessed by
applications.

Validation
mechanisms such as
checksum should be
present to ensure data
integrity.

 40

TABLE 3. SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued)

Causal Analysis
No.

HUMS
Subsystem

Under
Consideration

Hazard
(Critical Event) Cause Effect Remedial Technique

16 HUMS
Database

The interface
software to the
HUMS and the
repository
software do not
integrate very
well.

The COTS
software
modules used
do not
integrate very
well.

The repository
cannot be
accessed.

When choosing COTS
software modules,
integration issues
between them must be
considered.

17 HUMS
Database

The repository is
not designed to
cope with the
workload.

Too many
requests
generated.

The repository
is not able to
service all
requests and
may go down,
or there may
be a severe
performance
hit.

The approximate
request load should be
anticipated, and an
appropriate repository
must be selected.

18 HUMS
Database

The primary and
backup
repositories are
not synchronized
properly.

Periodic
synchroni-
zation of
repositories
not enforced.

When the
backup
repository
takes over,
errors may
arise.

The primary and
backup repositories
should be
synchronized
periodically.

19 HUMS
Database

The data may be
corrupted as it is
being transferred
from the
repository to the
requesting
application.

System error Erroneous data
is transferred
to the
application
that requested
it.

The received data
should be checked
before use. If
erroneous, it should be
rejected and the
request retransmitted.

20 HUMS
Interface to
Client
Application

Client attempts
to connect to the
HUMS database
but does not get
a response.

The HUMS
subsystem
may be down.

Client will
generate a
request
timeout error.

Appropriate messages
should be returned so
that the client knows
that there is an error at
the HUMS.

21 HUMS
Interface to
Client
Application

Client software
does not support
SSL/Encryption.

Outdated
software
being used by
client.

Client will not
be able to
connect to the
HUMS.

Specifications for the
client machine and
software should be
provided.

 41

TABLE 3. SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued)

Causal Analysis
No.

HUMS
Subsystem

Under
Consideration

Hazard
(Critical Event) Cause Effect Remedial Technique

22 HUMS
Interface to
Client
Application

Client session
remains inactive
for a long time
without being
terminated.

Incorrect
logic being
used for
session
timeout.

Long sessions
pose a security
risk, as they
can be hacked
into.

If no activity is
registered for a period
of time, the session
should be terminated
and have to be
restarted.

*SSL = Security sockets layer

5.2.2 Vulnerability Analysis of the HUMS.

Figure 11 represents a model used to identify hazards from a security perspective.

Vulnerability Element
Normally expressed in one

or more areas:
- Buffer Overflow
- Denial of Service
- Disclosure
- Modification

- Mission Need Statement
- Concept of Operations
- Architecture (NAS, ISS)
- Requirements

Threat(s)
- Malicious Attacks
- Unintended Acts
- Natural Events

Vulnerability
Element

System State
- Condition
- Exposure
- Environment
- Vulnerability

Proposed Vulnerability Analysis Model
(InfoSec)

FIGURE 11. VULNERABILITY ANALYSIS MODEL [13]

The mission need statement, concept of operations, requirements, and NAS architecture are
considered while documenting a list of hazards. Also taken into account are the factors that
cause the vulnerabilities and the various states in which the system is expected to perform, their
environmental impact and so on.

Table 4 provides an example vulnerability analysis performed on the various modules of the
architecture proposed in figure 11 [13].

 42

TABLE 4. SAMPLE VULNERABILITY ANALYSIS FOR A HUMS

No.

HUMS
Subsystem

Under
Consideration Threat Effect Remedial Technique

1 ACARS Data can be intercepted
during transmission by
hackers.

Unauthorized access
gained to important
data.

Encryption should be
used during
transmission.

2 ACARS Data can be corrupted
during transmission by
hackers.

Important data can be
corrupted.

Message digests should
be used to ensure data
integrity.

3 ACARS Encryption key is
compromised

Unauthorized access
to important data.

The session key is
changed frequently.

4 ACARS Denial of Service Receiver is unable to
handle incoming
requests.

Intrusion detection
mechanism is
employed.

5 HUMS Gateway Attacker launches a
DoS attack on the
HUMS gateway.

The HUMS database
is incapable of
handling data.

Host-based and
network-based
intrusion detection can
be used to detect and
respond to DoS attacks.

6 HUMS
Database

Attacker compromises
the secret key used for
validating ACARS.

An attacker can now
pretend to be the
ACARS node that is
sending data to the
HUMS.

Efficient key storing
techniques must be
employed. Also, key
lengths should be
longer, and key setup
techniques should be
chosen to make the
task of an attacker
difficult.

7 HUMS Internal
Network

An insider who has
access to the private
network can sniff the
network or disrupt data
transfer across it.

The confidentiality of
transmissions
between HUMS and
other entities in the
private network is
compromised.

Network monitoring
tools that can detect
and thwart such attacks
should be used.

 43

TABLE 4. SAMPLE VULNERABILITY ANALYSIS FOR A HUMS (Continued)

No.

HUMS
Subsystem

Under
Consideration Threat Effect Remedial Technique

8 HUMS
Gateway

The COTS software
running on the HUMS
gateway may be
vulnerable to buffer
overflow attacks.

An attacker can use a
buffer overflow
attack to run his code
on the system, which
will result in
compromise of the
gateway.

The software must be
analyzed for
vulnerability to buffer
overflow attacks.

9 COTS
Software

Attackers can exploit
bugs and other
vulnerabilities in
software.

Trojans, backdoors,
bugs, and other
vulnerabilities in
COTS software can
result in compromise
of sensitive
information.

Bug reports and mailing
lists of COTS
components should be
periodically checked to
ensure that all patches
are duly installed on the
COTS software.

10 COTS
Software

New updates/matches
may cause a previous
bug to resurface,
resulting in a threat to
security.

Previously corrected
bugs continue to
contribute to the
vulnerability of the
system.

Updates/patches should
be installed carefully to
avoid any undesirable
side effects. Exhaustive
testing should be done
each time.

11 COTS
Software

A user may install
malicious software that
may result in the
transfer of data
different from that
requested.

Incorrect data will be
supplied to
requesting entities.

Inherent intrusion
detection techniques
employed in databases
ensure that intrusions
are detected and
prevented.

5.3 CONSIDERATIONS FOR INTEGRATED SAFETY AND SECURITY APPROACHES.

Safety and security cannot be considered orthogonal to each other. For any effective risk
mitigation strategy, both have to be taken into account. The advantages of this are twofold [14]:

• System deployment goals can be more effectively achieved when system safety and

information security issues are resolved and risk mitigation requirements are
implemented during the design phase.

• It is less expensive to accommodate risk mitigation strategies at the design phase, rather
than during project completion.

 44

Sections 5.2.1 and 5.2.2 provided example hazard and vulnerability analyses performed on the
HUMS. The identified hazards and vulnerabilities are then viewed from the point of view of
their hazard effect and likelihood and are assigned a risk level. (Refer to section 4.2 for details
about hazard effect and likelihood.) A risk mitigation strategy is adopted for each hazard and
vulnerability corresponding to its risk level. This strategy may in turn affect some of the original
requirement definitions. The changes in requirements are then incorporated into the system
specifications. This risk management strategy is illustrated in figure 12.

Hazard Effect

Likelihood

Risk Level

Risk
Mitigation
Strategy

Requirements
Integration

Hazard Analysis

Vulnerability Analysis

FIGURE 12. RISK MANAGEMENT STRATEGY [13]

6. STUDY OF DATA INTEGRITY IN GROUND-BASED SYSTEMS.

Two case studies were performed to analyze data integrity in ground-based systems. Each case
study used a different approach. In case study 1, two COTS components were considered: one
that did not participate in HUMS part-life determination (i.e., the Microsoft Windows OS) and
one that did take part in HUMS part-life determination (i.e., Microsoft Access). Here, the term
part-life determination refers to the information and maintenance policy used to determine the
lifetime of parts. All objectives of DO-278 (Tables A-1 through A-10 and COTS Tables 4-1
through 4-3) were considered. In case study 2, a study was performed on a generic HUMS using
the COTS-specific guidance of DO-278, specific to a COTS DBMS package.

 45

6.1 CASE STUDY OF COTS HAVING DIFFERING HUMS PART ACTIONS (CASE
STUDY 1).

DO-178B [1] provides guidance for software used in airborne systems, while DO-278 [2]
provides guidance for ground-based systems. However, the HUMS AC only recognizes
DO-178B, and not DO-278, as an acceptable standard for the HUMS airborne and ground-based
system software. This report focuses on ground-based COTS systems, and therefore, uses
DO-278 for software assurance guidance. In many areas of ground-based software operations,
the accountability of DO-278 objectives should be made on a case-by-case basis. A preferred
method of determining the applicability of DO-278 objectives would be to perform a detailed
analysis of each system component for all the objectives of DO-278 guidance document and
provide a rationale of compliance. A sample of the research investigation into this technique is
presented below, specific for the HUMS system under study. Of key importance in this
technique is the component’s assigned assurance level from the system safety assessment.

Per the HUMS AC, the level of assurance for the HUMS application will be based on the results
of the FHA. The FHA will identify what the effects will be on the aircraft if the HUMS
application provides misleading information. The determined failure condition categories for the
HUMS functions will depend on the functions provided by the HUMS. For example, a HUMS
that is used to do rotor track and balance may be assessed to result in a major failure condition
category should the HUMS fail to perform this function correctly. However, a HUMS that
tracks effective usage hours for a critical structural component may result in either a catastrophic
or a hazardous/severe-major failure condition category.

The method applied to both COTS case studies was targeted to DO-278’s AL4, which is a new
level that is not present in DO-178B. The primary reason to select AL4 was to exercise this new
assurance level to analyze how applicable are its objectives given the information available for
COTS components. Some assurance levels in DO-178B (airborne software guidance) map
directly to DO-278 (ground-based software guidance). For instance, DO-178B Level C maps to
AL3 and DO-178B level D maps to AL5. However, AL4 in DO-278 “was developed to account
for certain CNS/ATM systems where AL3 was too stringent and AL5 was too lenient.” From
DO-178B, level C could cause or contribute to a major failure condition and level D could cause
or contribute to a minor failure condition. Thus, AL4 is targeted somewhere between a major or
minor failure condition. Only those DO-278 objectives for AL4 were considered in the research
investigation below.

The two COTS products under study differ in that the Microsoft Windows OS does not make
any determination of the part’s suitability for remaining on-aircraft. The other COTS product,
Microsoft Access, will make a part-life determination for the aircraft. Many of the objectives
investigated for this assurance level resulted in identical activities for both COTS products
needing to meet the objective. For instance, the planning objectives of DO-278 must be clearly
met for both the Microsoft Windows OS and Microsoft Access. However, other objectives were
not necessary for both COTS products. For example, the objective on software architecture is
completely unimportant for the Microsoft Windows OS COTS product because it makes no part-
life decisions. One the other hand, Microsoft Access does make those decisions and, therefore,
an understanding of the software architecture is necessary. Given this disparity based on part-

 46

life, one could argue that the two components are essentially at two different assurance levels.
However, with an integrated system component (such as an OS) there are operations that are
performed at a variety of functional levels, which is problematic in the acceptance process.

The resultant objectives reported in table 5 from this research investigation are only those
objectives that showed different activities of objective compliance between a non-part-life
decision COTS (Microsoft Windows OS) and a part-life decision process (Microsoft Access).

The terms applicable, partial, and N/A used in table 5 are explained below.

• Applicable. The term applicable means that given the information available, the

corresponding objective may be applied fully.

• Partial. The term partial means that given the information available, the corresponding
objective may be applied only partially, and further methods of compliance would be
needed to fully comply with the objective.

• N/A. The term N/A means that given the information available, the corresponding
objective may not be applied.

The analysis in table 5 is only based on the demonstration HUMS for this study, and should not
be used as a recommendation for similar systems.

TABLE 5. ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS

DO-278
Annex A
Reference Objective

Paragraph
Reference

Microsoft Windows OS
(has no part-life effect)

Microsoft Access
(affects part-life decisions)

2-3 Software
architecture is
developed.
(A-2,2)

5.2.1a Partial: Not applicable except any
architectural issues arising during
integration of the COTS OS into the
HUMS system (e.g., a partitioned
system or process management)

Applicable: for Microsoft
Access setup and data
structures.

2-8 Adaptation data
and related
processes are
defined (when
applicable).
(A-2,4)

4.2 N/A: Adaptation data is HUMS
specific information designed for
future updates, such as part-life
algorithm coefficients. In this case,
the Microsoft Windows OS has no
impact on this data.

Applicable

 47

TABLE 5. ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued)

DO-278
Annex A
Reference Objective

Paragraph
Reference

Microsoft Windows OS
(has no part-life effect)

Microsoft Access
(affects part-life decisions)

3-7 Algorithms are
accurate.
(A-3,2)

6.3.1g Partial: Algorithms used in the
COTS components are proprietary.
However, for certain special cases,
this objective needs to be met. For
example, error correction codes
performed in OS drivers and similar
related functions must meet this
objective. Proof of accuracy needs to
be provided by vendor, or applicant
must verify the function correctness.

Applicable: Although
there is no access to the
actual algorithm used, it
can be verified via
functional correctness.

4-7 Algorithms are
accurate. (A-
4,1 and A-4,3)

6.3.2g Partial: Algorithms used in the
COTS components are proprietary.
However, for certain special cases,
this objective needs to be met. For
example, error correction codes
performed in OS drivers and similar
related functions must meet this
objective. Proof of accuracy needs to
be provided by vendor, or applicant
must verify the function correctness.

Applicable: Although
typically there is no access
to the actual algorithm, it
can be verified via
functional correctness.

4-8 Software
architecture is
compatible with
high-level
requirements.

6.3.3a Partial: The need to accommodate
this objective is very project specific.
While the details of the exact
software architecture used are
proprietary, there may be alternate
means to demonstrate that the
architecture meets the high-level
requirements. Some requirements
may need an understanding of the OS
architecture, e.g., task queuing,
which must be demonstrated to
comply with the high- level
requirements. There are also
examples of how the architecture of
the OS is not needed, e.g., logging
into the OS.

Applicable: Need
verification via Microsoft
Access API.

4-9 Software
architecture is
consistent. (A-
4,4)

6.3.3b Partial: same as 4-8 Applicable: need
verification via Microsoft
Access API.

 48

TABLE 5. ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued)

DO-278
Annex A
Reference Objective

Paragraph
Reference

Microsoft Windows OS
(has no part-life effect)

Microsoft Access
(affects part-life decisions)

4-10 Software
architecture is
compatible with
target computer.
(A-4,2;A-
4,5;A-4,6)

6.3.3c Partial: same as 4-8. Applicable: need
verification via Microsoft
Access API.

4-13 Software
partitioning
integrity is
confirmed.
(A-4,8)

6.3.3f Applicable: If the OS supplies
partitioning, then it should be
confirmed. Other system
components such as Microsoft
Access would require confirmation
that the OS supplies effective
partitioning such that Microsoft
Access does not interfere with other
component operation.

N/A: However, one
exception is that
confirmation is needed to
assure that Microsoft
Access does not violate any
partition mechanism,
should such a system have
partition mechanisms.

7-1 Test procedures
are correct.

6.3.6b Partial: Test procedure correctness is
not needed for Microsoft Windows
OS. However, procedures for testing
of the integrated COTS component in
the HUMS system would need to be
verified as correct.

Applicable for HUMS
specific requirements at
this level 4, but as one goes
higher in the assurance
levels, a question arises
about needing the COTS
vendor test procedures and
results.

7-2 Test results are
correct and
discrepancies
explained.

6.3.6c Partial: Typically test results are not
available. However, procedures for
testing of the integrated COTS
component in the HUMS system
would have to be verified as correct.

Applicable for HUMS
specific requirements at
this level 4, but as one goes
higher in the assurance
levels, a question arises
about needing the COTS
vendor test procedures and
results.

8-6 Software life
cycle
environment
control is
established.

7.2.9 N/A: No control over the
development process of the COTS
product.

N/A for AL4, but as one
goes higher in the AL it
may be a factor.

 49

TABLE 5. ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued)

DO-278
Annex A
Reference Objective

Paragraph
Reference

Microsoft Windows OS
(has no part-life effect)

Microsoft Access
(affects part-life decisions)

Adaptation
Data

4.2.1a The data that
may be adapted
for a particular
location is
defined.

4.2.1.a N/A for a Microsoft Windows OS,
except for isolated cases such as an
IP address.

Applicable

4.2.1b The
mechanisms for
generating and
modifying
adaptation data
are defined for
each location.

4.2.1.b N/A for a Microsoft Windows OS,
except for isolated cases such as an
IP address.

Applicable

4.2.1c The objectives
for verification,
software quality
assurance,
software
configuration
management,
and approval
processes are
satisfied for
each location.

4.2.1.c N/A for a Microsoft Windows OS,
except for isolated cases such as an
IP address.

Applicable

API = Application Programming Interface
IP = Internet Protocol
Note: DO-278 Annex A sections 4.2.1a, 4.2.1b, and 4.2.1c are related to adaptation data.

6.2 CASE STUDY OF A WIDELY USED COTS DBMS WITHIN A HUMS CONTEXT
(CASE STUDY 2).

Case study 2 was also performed on an in-service, generic HUMS using the COTS-specific
guidance of DO-278. A generic HUMS was selected for the case study because it is a ground-
based system and uses COTS components, specifically, a database management component.

The case study in this section makes no judgment about the applicability of the objective to this
particular COTS component. This study, rather, assumes each objective must be met and
discusses the issues that arise when considering the objectives for such a DBMS component.

Although the FAA HUMS ACs’ guidance does not call out DO-278, it is used for this case study
because it provides relevant information for ground-based systems using COTS components.

 50

The lessons learned from this case study might also apply to other ground-based systems, such as
CNS/ATM systems.

This section describes the case study, using a particular DBMS as a representative COTS
product and applying the COTS-specific objectives and activities described in Section 4 of DO-
278.

Figure 13 illustrates the generic HUMS. The COTS components, which are used in the
construction of this HUMS, are:

• ACARS

• COTS installation software

• COTS Common Object Request Broker Architecture (CORBA)—compliant
communications software

• COTS Relational DBMS

FIGURE 13. REPRESENTATIVE GROUND-BASED SYSTEM

Database management systems are used in a wide variety of applications. A very commonly
used, extensive DBMS is selected for this case study. The particular DBMS is a representative

ACARS

HUMS
 Health and Usage Monitoring System)(

Installation
Program

COTS
tools

Server
Software

Normalize Data

Analyze Data

Client
Software

Report
Viewer

Display
Graphs

Print
Reports

Print
Graphs

Database
COTS

Relational
Database
System

Flight
Data

Fleet
Config
Data

or

Help
User Interfaces

or hand written or tape or floppy disc manual data entry or stored file

data transfer data transfer
ODBC

Installation
Program CD CD

COTS
tools

function call
with data

function call
with data

function call
with data

CORBA
Compliant

Communications
CORBA

Compliant
Communications

function call
with data

Output
Reports

automatic
report
generation
to file or
print

data
software
hard copy

Legend

COTS

 51

COTS product because of its complexity, which provides a sample to exercise DO-278, and
because of its widespread use, adds to the applicability and value to this study.

Like many vendors of sophisticated software, the vendor of the example COTS database
maintains an extensive web site that contains a great deal of information about their products.
The COTS database vendor also encourages communication within their user community.
Table 6 summarizes how the information available regarding the COTS database might be used
to exercise DO-278 coverage of COTS-related objectives. Table 6 describes the DO-278
objective and associated lessons learned. For a clearer understanding of the lessons learned,
refer to DO-278 activities supporting the objective.

TABLE 6. DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2

DO-278
Objective
Reference

DO-278 Objective
Description Lessons Learned

4.1.4.1.a Activities for
acquisition and integral
processes, including
additional
considerations,
integration, and
maintenance, are
defined.

• The database life cycle data has limited availability,
and the life cycle description is not apparent.

• The integration of this highly commercialized
database was not difficult; however, a COTS product
more tightly coupled with the ground-based system
may increase integration-specific activities.

• Historical information was difficult to obtain. User
discussion forums may offer some insight, but this
may provide little justification toward product
acceptance.

• Guidance in DO-278 with respect to COTS vendor
qualifications was difficult to interpret for the
activity associated with this objective, as the level of
qualification requested is not quantitatively
understood. This area needs improvement in
DO-278.

• In general, it would not be suggested that the
developers of the ground-based system attempt to
modify the COTS database beyond the normal
customizing capabilities of the COTS product. In
particular, if modifications are necessary, vendor
support might not be available and associated
verification would be difficult.

• In the COTS acquisition planning process,
consideration should be given to acquiring access to
discussion and other related forums to assist in
determining the maintenance and health of particular
versions.

 52

TABLE 6. DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued)

DO-278
Objective
Reference

DO-278 Objective
Description Lessons Learned

4.1.4.1.a
(Continued)

 • Summary—There may not presently be any COTS
products that were developed to explicitly support
DO-278 compliance with respect to applications that
incorporate the COTS. As such, the customer
would be required to analyze and discuss with the
vendor its ability to meet these objectives.

4.1.4.1.b Transition criteria for
these processes and
transition criteria with
respect to CNS/ATM
software life cycle
processes are defined.

• No COTS integral process was found in DO-278,
yet it asks for the integral process to be defined.
The assumption made was that the term integral
process is used from DO-178B and represents the
planning, verification, quality assurance, and
configuration management activities. However,
DO-278 should include a reference to the DO-178B
integral process description for first time users.

• COTS vendor transition criteria were not available
from this database developer.

4.1.4.1.c Plans for COTS
processes, including
COTS transition
criteria, are consistent
with the supplier’s
software plans.

• Plans were not available from the COTS vendor.
Plan consistency per DO-278 was not possible for
this particular COTS product.

• In reviewing the transition criteria guidance in DO-
278 and DO-178B as applied to COTS products, it
was difficult to assess the real guidance being
offered. This portion of DO-278 was found to be
weak; it needed better definition for proper
understanding of the objective’s true intent.

4.1.5.1.a The degree to which
of the CNS/ATM
software requirements
are satisfied by the
COTS capabilities is
determined.

• The supplier’s target system offered two different
database packages. The flexibility of having two
different database packages to choose from may
require two separate requirement traceability
matrices.

• Technical consulting from the COTS vendor may be
one mechanism for assisting the effort to have the
COTS database software meet DO-278
requirements.

 53

TABLE 6. DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued)

DO-278
Objective
Reference

DO-278 Objective
Description Lessons Learned

4.1.5.1.b The adequacy of life
cycle data available
for assurance
purposes is
determined.

• The life cycle data for this database was not readily
available, and no evaluation as to the adequacy of
the COTS life cycle data has been made.

• This highly commercialized product leaned toward
lack of support for older versions. If the COTS
components are upgraded to be current in the
ground-based application, then the vendors who
provide them will more likely support the COTS
components.

4.1.5.1.c(1) The derived
requirements are
identified. Derived
requirements consist
of (1) Requirements
imposed on the
CNS/ATM system
due to the usage of
COTS and (2)
Requirements to
prevent the unneeded
capabilities of the
COTS from
adversely affecting
the CNS/ATM
system.

• The subject database included undesirable
capabilities such as automatic database calculation
update. Automatic functions such as this may
require additional requirements by the application in
both development and installation.

4.1.5.1.d The compatibility of
COTS with target
hardware and other
ground-based
software is assured.

• The COTS database would be compatible with the
target environment. However, the vendor’s
information does not, and cannot reasonably, cover
every possible configuration of the target
environment. Careful functional testing by the
supplier is required.

 54

TABLE 6. DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued)

DO-278
Objective
Reference

DO-278 Objective
Description Lessons Learned

4.1.6.1 Section 4.1.6.1 of DO-
278 states “There are
no additional
verification objectives
imposed upon the
CNS/ATM system
[HUMS being
developed] because of
the use of COTS.”
However, it is still
necessary to meet the
verification objectives
of the 10 tables in
section 3 of DO-278.
(Note: Brackets added
for clarity.)

• High-level requirements coverage is possible; low-
level requirements are problematic. Other areas of
difficulty included requirement traceability and
conformity to standards.

• Supplemental software (glue code, etc.) is mainly
developed by the applicant/supplier and as such can
fully follow DO-278 in both development and
verification. However, if the COTS vendor supplies
this code, then alternate means may be required to
comply with this objective.

• Because the application under study here is of a very
low assurance level (perhaps AL5 or AL6), few of
these objectives are required to be met. It is clear,
however, that arguing compliance to AL1 or AL2
would be very difficult with a COTS component
unless the supplier had access to details and data
regarding the development of the COTS component.
One would surmise that the COTS component would
need to have been developed under DO-178B or
DO-278 guidance to accomplish these assurance
level goals.

4.1.7.1.a The COTS specific
configuration and data
items (for example,
software,
documentation,
adaptation data) are
uniquely identified in
the CNS/ATM
software configuration
management system.

• The vendor’s COTS software identification was
apparent, but the developer of the ground-based
system is responsible for coordinating the precise
hardware and OS configurations to be used with the
COTS database configuration. Anecdotal data also
suggest that some COTS vendors may not have
proper control of their delivered product; subsequent
deliveries may not have been based on previous
deliveries.

 55

TABLE 6. DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued)

DO-278
Objective
Reference

DO-278 Objective
Description Lessons Learned

4.1.7.1.c The CNS/ATM change
control process ensures
that the incorporation
of COTS releases is
controlled.

• The COTS database vendor provides information
regarding updating releases and versions of the
database; however, the information is typically
relevant to updating from the last release or version
of the database to the current one. Updating from
releases or versions in the more distant past could
present a problem from the perspective of obtaining
adequate information. However, the developer of the
ground-based system should test the ground-based
system with the upgraded COTS database to confirm
the expected impact or lack of impact the upgrade
will cause.

6.3 THE COTS INSTALLATION SOFTWARE.

Additionally, COTS installation software must be considered. Although not explicitly
mentioned, objectives for correct installation of software target computer systems are lacking in
DO-278. This would include verification that the installation package software for the ground-
based system has correctly installed the system using all selected installation target
environments. A COTS installation software package used on the subject system was studied to
determine the information that would be available to help developers of the ground-based system
verify that the installations of the ground-based systems would be correct. Information regarding
internal configuration control, testing, or source code for the COTS installation software does
not appear to be readily available.

7. SUMMARY AND RECOMMENDATIONS.

7.1 SUMMARY.

Ground-based processing systems are likely to use COTS components for maintaining flight-
critical data. Hence, the ground-based COTS processing systems must be trustworthy and secure
to maintain the integrity of the data. This report presents an investigation of the issues that arise
from the use of COTS components in safety-critical systems and the approaches required to
ensure flight-critical data integrity. The research was focused on information and data
protection, access security, and the processes and objectives for ensuring data integrity.

The existing guidance governing the use of COTS components for safety-critical applications
and the objectives of current guidance from the point of view of applicability and shortcomings
were investigated. The use of hazard analysis and vulnerability analysis as a means for
developing an effective risk mitigation strategy was also investigated. Individual COTS
components such as the Microsoft Windows operating system and the Microsoft® Access®

 56

DBMS were analyzed from a safety and security perspective. An investigation of the relevance
of the rotorcraft AC 27-1B Change 1 and AC 29-2C Change 1 to a COTS components scenario
was presented. To address security and vulnerability concerns, several technologies were
investigated, such as encryption/decryption, authentication, access control, and intrusion
detection, particularly in relation to application within a HUMS context.

Two case studies involving COTS products were done to determine if the products can be
certified by following existing certification guidance, such as DO-178B or DO-278. This report
presented a possible process using COTS components that can readily be analyzed. In addition,
feasibility of the presented process is demonstrated by the implementation of a proof-of-concept
(POC) and scaled-down version of the HUMS system. The architecture of this demonstration
project shows that various security mechanisms can be incorporated in the design of this scaled-
down HUMS system. Finally, a case study of COTS used in a different domain was completed
to determine if lessons could be learned in the design process.

7.2 RESULTS.

The main result of the investigation was the analysis of the existing certification guidance for
COTS component-based ground processing systems, including DO-178B, DO-278, and the
HUMS AC, from the point of view of applicability and shortcomings. It was also demonstrated
how hazard analysis and vulnerability analysis can be used as a means for developing an
effective risk mitigation strategy. Using a commercial database in a COTS-based flight-
information system as a study case, the investigation led to several useful lessons, for instance,
the life cycle data for the example database was not readily available, no evaluation as to the
adequacy of the COTS life cycle data has been made, and the support for older versions was not
available once the COTS components were upgraded.

7.3 RECOMMENDATIONS.

A future research task may be to investigate the issue of independence and redundancy of
software systems. Multiple-version redundancy has been offered in the HUMS AC 27-1B
Change 1 and AC 29-2C Change 1 as a means for independent verification of ground-based
COTS hardware and software equipment. For example, if two software systems can justify that
they do not have any common failures, it can be claimed that each may be used for an
independent verification of the other. Yet, improperly controlled or incorrect data submitted to
redundant processing by a second dissimilar PC with different COTS components compared to
the primary processor may in all probability still yield incorrect predictions.

Another immediate recommended extension of this study is to investigate the effectiveness of
various alternate approaches as mitigating actions in ground-based COTS systems. Due to the
nature of COTS components, it is not always possible to meet the required objectives. In case
these objectives are not met by the COTS components using a normal system design process,
mitigating actions can be considered to increase the reliability, trustworthiness, and failsafe
properties of the COTS systems. It is recommended that these mitigating actions need to be
taken at all three logical stages of flight data (data communication, processing, and storage) and
should be based on a hazard assessment. In addition, it is recommended to analyze the

 57

effectiveness of mitigating actions based on application characteristics, such as non-time-critical
and possible human intervention, and to determine the viability of making these mitigating
actions a part of DO-178B or DO-278 guidance.

Although not explicitly mentioned, objectives for correct installation of software target computer
systems are lacking in DO-278. It is recommended that COTS installation software must also be
considered as an objective. This would include verification that the installation package
software for the ground-based system has correctly installed the system using all selected
installation target environments.

It is recommended that cryptography should be used in HUMS to make the ACARS signals
secure with techniques such as secret key cryptography and public key cryptography, since
anyone having a very high frequency or a high-frequency communication device that is within
range of the transmissions can intercept these ACARS signals. In addition, IDSs should be used
in HUMS to enable detection and subsequent prevention of intruders into the network.

8. REFERENCES.

1. RTCA DO-178B, prepared by RTCA SC-167/EUROCAE WG-12, “Software
Considerations in Airborne Systems and Equipment Certification,” Washington, DC,
December 1, 1992.

2. RTCA DO-278, prepared by SC-190, “Guidelines for Communication, Navigation,
Surveillance and Air Traffic Management (CNS/ATM) System Software Integrity
Assurance,” March 5, 2002.

3. Maurizio Morisio, “Commercial-Off-The-Shelf (COTS): A Survey. A DACS State-of-
the-Art Report,” Contract Number SP0700-98-D-4000, Data and Analysis Center for
Software, December 2000.

4. CAST paper, “Use of a Level D Commercial Off-the-Shelf Operating System in Systems
With Other Software of Levels C and/or D,” CAST-14, http://www.faa.gov/aircraft/
air_cert/ design_approvals/air_software/CAST/cast_papers/.

5. James E. Land, “HUMS – The Benefits – Past, Present and Future,” IEEE Proceedings of
the Aerospace Conference, 2001, Vol. 6, CA, USA, 2001.

6. Advisory Circular 27-1B, Change 1, “Certification of Normal Category Rotorcraft,”
April 25, 2003; Miscellaneous Guidance (MG) 15, February 12, 2003, Chapter 3,
“Airworthiness Standards Normal Category Rotorcraft;” AC 27 MG 15, “Airworthiness
Approval of Rotorcraft Health Usage Monitoring System (HUMS),” February 12, 2003.

7. Advisory Circular 29-2C, Change 1, “Certification of Transport Category Rotorcraft,”
April 25, 2003; AC 27-1B, Change 3, Chapter 3, “Airworthiness Standards Transport
Category Rotorcraft;” AC 29 MG 15, “Airworthiness Approval of Rotorcraft Health
Usage Monitoring System (HUMS),” February 12, 2003.

 58

http://www.faa.gov/aircraft/%20air_cert/%20design_approvals/air_software/CAST/cast_papers
http://www.faa.gov/aircraft/%20air_cert/%20design_approvals/air_software/CAST/cast_papers

8. Richard Sewersky, “System Design Assessment for a Helicopter Structural Use
Monitor,” MS Thesis, MIT, June 1999.

9. Aloke Roy, “Secure Aircraft Communications Addressing and Reporting System
(ACARS),” 20th Digital Avionics Systems Conference (DASC), Vol. 2, pp. 124-134,
Honeywell International, Inc., Columbia, Maryland, October 2001.

10. Curtis Risley, James McMath, and Captain Brian Payne, “Experimental Encryption of
Aircraft Communications Addressing and Reporting System (ACARS) Aeronautical
Operational Control (AOC) Messages,” 20th Digital Avionics Systems Conference
(DASC), Vol. 2, pp. 320-327, October 2001.

11. SANS Institute Resources, “NSA Glossary of Terms Used in Security and Intrusion
Detection,” http://www.sans.org/resources/glossary.php

12. The FAA System Safety Handbook, http://www.faa.gov/library/manuals/aviation/
risk_management/ss-handbook/

13. National Airspace Modernization, “System Safety Management Program,” FAA
Acquisition Management System, January 2004.

14. Ronald Stroup, Warren Naylor, and Michael LeBeau, “The Leveraging of Safety and
Information Security Engineering Principles: Establishing an Effective Level of
Integrated Risk Management,” FAA National Software Conference, May 2002.

15. Code of Federal Regulations, Title14 - Aeronautics and Space, National Archives and
Records Administration, http://www.access.gpo.gov/nara/cfr/cfr-table-search.html

16. Kelly Hayhurst, “The Guidance and Control Software Project: A Software Engineering
Case Study,” Assessment Technology Branch, NASA Langley Research Center,
http://shemesh.larc.nasa.gov/people/kjh/short-GCS-talk/

17. Ron Stroup, “Implementation of RTCA DO-278/ED-109,” FAA National Software
Conference, May 2002.

18. “Integrated Mechanical Diagnostics (IMD) Health & Usage Monitoring System
(HUMS),” DSMC Lecture, June 24, 1999.

19. Richard A. Sewersky, “System Design Assessment for a Helicopter Structural Usage
Monitor,” Paper for a Masters of Science in Engineering and Management at MIT, June
1999.

20. Uma D. Ferrell and Thomas K. Ferrell, “Software Service History Handbook,” FAA
report DOT/FAA/AR-01/116, January 2002.

21. CAST-13, “Automatic Code Generation Tools Development Assurance,” June 2002,
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

 59

http://www.sans.org/resources/glossary.php
http://www.faa.gov/library/manuals/aviation/%20risk_management/ss-handbook/
http://www.faa.gov/library/manuals/aviation/%20risk_management/ss-handbook/
http://www.access.gpo.gov/nara/cfr/cfr-table-search.html
http://shemesh.larc.nasa.gov/people/kjh/short-GCS-talk/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_

22. Nancy G. Leveson, Safeware, System Safety and Computers, Addison-Wesley Publishing
Company, Chapter 12, pp. 436, September 1995.

23. “Modular Certification,” NASA Report December 2002, NASA/CR – 2002-212130, SRI
International, Menlo Park, CA.

24. Bruce Schneier, Applied Cryptography, Second Edition, John Wiley and Sons, Inc.,
1996.

25. E. Bertino and E. Ferrari, “Data Security,” Proceedings of the Twenty-Second Annual
International Computer Software and Applications Conference (COMPSAC), pp. 228-
237, 1998.

26. P.C. Clark, M.C. Meissner, and K.O. Vance, “Secure Compartmented Data Access Over
an Un-Trusted Network Using a COTS-Based Architecture,” 16th Annual Conference
Computer Security Applications (ACSAC), 2000.

27. C.L. Schuba and E.H. Spafford, “A Reference Model for Firewall Technology,”
Proceedings of the 13th Annual Computer Security Applications Conference, 1997.

28. B. Mukherjee, L.T. Heberlein, and K.N. Levitt, “Network Intrusion Detection,”
IEEE Network, Vol. 8, Issue 3, pp. 26-41, May-June 1994.

29. R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. Weber,
S.E. Webster, D. Wyschogrod, R.K. Cunningham, and M.A. Zissman, “Evaluating
Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion Detection
Evaluation,” DARPA Information Survivability Conference and Exposition (DISCEX),
Vol. 2, pp. 12-26, 2000.

30. Stefan Axelsson, “Research in Intrusion Detection Systems: A Survey,” Department of
Computer Science and Engineering, Chalmers Institute of Technology, Goteborg,
Sweden, TR:98-17, December 15, 1998, Revised August 19, 1999.

31. M. Bishop, S. Cheung, et al., “The Threat From the Net,” IEEE Spectrum, 1997.

32. J. McHugh, A. Christie, and J. Allen, “Defending Yourself: The Role of Intrusion
Detection Systems,” IEEE Software, Vol. 17, Issue 5, pp. 42-51, September-October
2000.

33. E. Amoroso and R. Kwapniewski, “A Selection Criteria for Intrusion Detection
Systems,” Proceedings of the 14th Annual Computer Security Applications Conference,
pp. 280-288, 1998.

34. B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer Forensics,” ACM
Transactions on Information and System Security, Vol. 2, No. 2, pp. 159-176, 1999.

 60

9. GLOSSARY.

Anomaly Detection Mode—A model in which intrusions are detected by looking for activity that
is different from the user’s or system’s normal behavior.

Assets—Information or resources to be protected by the countermeasures of a target of
evaluation (TOE).

Assurance—Grounds for confidence that an entity meets its security objectives.

Attack—An attempt to bypass security controls on a computer. The attack may alter, release, or
deny data. Whether an attack will succeed depends on the vulnerability of the computer system
and the effectiveness of existing countermeasures.

Audit—The independent examination of records and activities to ensure compliance with
established controls, policy, and operational procedures, and to recommend any indicated
changes in controls, policy, or procedures.

Audit Trail—A chronological record of the system resource used in computer security systems.
This includes user login, file access, various other activities, and whether any actual or attempted
security violations occurred, legitimate and unauthorized.

Buffer Overflow—This happens when more data is put into a buffer or holding area than the
buffer can handle. It results from a mismatch in processing rates between the producing and
consuming processes. This can result in a system crash or the creation of a back door leading to
system access.

Class—A grouping of families that share a common focus.

Component—The smallest selectable set of elements that may be included in a protection profile
(PP), a security target (ST), or a package.

Compromise—An intrusion into a computer system where unauthorized disclosure,
modification, or destruction of sensitive information may have occurred.

Computer Abuse—The willful or negligent unauthorized activity that affects the availability,
confidentiality, or integrity of computer resources. Computer abuse includes fraud,
embezzlement, theft, malicious damage, unauthorized use, denial-of-service (DoS), and
misappropriation.

Computer Security—Technological and managerial procedures applied to computer systems to
ensure the availability, integrity, and confidentiality of managed information.

COTS Installation Software—The software used to manually or automatically install some other
COTS software, e.g., InstallShield®, WinZip™, etc.

 61

http://www.sans.org/newlook/resources/glossary.htm#BACK DOOR

Countermeasure—Action, device, procedure, technique, or other measure that reduces the
vulnerability of an automated information system. Countermeasures aimed at specific threats
and vulnerabilities involve more sophisticated techniques, as well as activities traditionally
perceived as security.

Cryptography—The science concerning the principles, means, and methods for rendering
plaintext unintelligible and for converting encrypted messages into intelligible form.

Denial-of-Service—Action(s) that prevent any part of an automated information system (AIS)
from functioning in accordance with its intended purpose.

Dependency—A relationship between requirements where the requirement that is depended
upon must normally be satisfied for the other requirements to be able to meet their objectives.

Element —An indivisible security requirement.

Evaluation—Assessment of a PP, ST, or TOE against defined criteria.

Evaluation Assurance Level—A package consisting of assurance components from section 3 of
DO-278 that represents a point on the common criteria (CC) predefined assurance scale.

Evaluation Authority—A body that implements the CC for a specific community by means of an
evaluation scheme and thereby sets the standards and monitors the quality of evaluations
conducted by bodies within that community.

Family—A group of components that share security objectives but may differ in emphasis or
rigor.

Firewall—A system or combination of systems that enforces a boundary between two or more
networks. It limits access between networks in accordance with local security policy. The
typical firewall is an inexpensive microbased UNIX® box, clean of critical data, that includes
many modems and public network ports, but just one carefully watched connection back to the
rest of the cluster.

Hacker—A person who enjoys exploring the details of computers and how to stretch their
capabilities, or a malicious or inquisitive meddler who tries to discover information by poking
around.

Hacking—An unauthorized use, or attempt to circumvent or bypass the security mechanisms, of
an information system or network.

Hazard—A state or set of conditions of a system (or an object) that, together with other
conditions in the environment of the system (or object), will lead inevitably to an accident (loss
event).

 62

http://www.sans.org/newlook/resources/glossary.htm#AIS

Health—A measure of the overall flightworthiness of the aircraft. Health is assessed by
examining the instantaneous indicators of the well being of vital components on the aircraft as
well as trend analysis of these indicators.

Information Security—The result of any system of policies or procedures for identifying,
controlling, and protecting from unauthorized disclosure, information whose protection is
authorized by executive order or statute.

Integrity—Assuring information will not be accidentally or maliciously altered or destroyed.

Intrusion Detection—Pertaining to techniques that attempt to detect intrusion into a computer or
network by observation of actions, security logs, or audit data. Detection of break-ins or
attempts, either manually or via software expert systems, that operate on logs or other
information available on the network.

Misuse Detection Model—The system detects intrusions by looking for activity that corresponds
to known intrusion techniques or system vulnerabilities. Also known as Rules Based Detection.

Monitoring—The means by which information can be gathered on the aircraft’s vital systems.

Network Based—Network traffic data along with audit data from the hosts used to detect
intrusions.

Network Security—Protection of networks and their services from unauthorized modification,
destruction, or disclosure, and provision of assurance that the network performs its critical
functions correctly, without harmful side effects. Network security includes providing for data
integrity.

Package—A reusable set of either functional or assurance components (e.g., an evaluation of
assurance level) combined together to satisfy a set of identified security objectives.

Product—A package of information technology (IT) software, firmware or hardware that
provides functionality designed for use or incorporation within a multiplicity of systems.

Protection Profile—An implementation-independent set of security requirements for a category
of TOEs that meet specific consumer needs.

Risk—The hazard level combined with (1) the likelihood of the hazard leading to an accident
(sometimes called danger) or compromise and (2) hazard exposure or duration (sometimes called
latency).

Role—A predefined set of rules establishing the allowed interactions between a user and the
TOE.

Safety—Freedom from unintentional accidents or losses.

 63

http://www.sans.org/newlook/resources/glossary.htm#INTRUSION
http://www.sans.org/newlook/resources/glossary.htm#RULES
http://www.sans.org/newlook/resources/glossary.htm#INTRUSION

Security—A condition that results from the establishment and maintenance of protective
measures that ensure a state of inviolability from hostile acts or influences.

Security Architecture—A detailed description of all aspects of the system that relate to security,
along with a set of principles to guide the design. Security architecture describes how the system
is put together to satisfy the security requirements.

Security Objective—A statement of intent to counter identified threats and/or satisfy identified
organization security policies and assumptions.

Security Target—A set of security requirements and specifications to be used as the basis for
evaluation of an identified TOE.

System—A specific IT installation with a particular purpose and operational environment.

Target of Evaluation—An IT product or system and its associated administrator and user
guidance documentation that is the subject of an evaluation.

Use—A measure of how the life of components is being expended on the life-limited parts of the
aircraft as well as determining the time to overhaul of major components.

User—Any entity (human user or external IT entity) outside the TOE that interacts with the
TOE.

Vulnerability—Hardware, firmware, or software flow that leaves an AIS open for potential
exploitation. A weakness in automated system security procedures, administrative controls,
physical layout, internal controls, etc., that could be exploited by a threat to gain unauthorized
access to information or disrupt critical processing.

 64

APPENDIX A—A PROOF-OF-CONCEPT DEMONSTRATION ARCHITECTURE

This section outlines the architecture of the demonstration project. The purpose of this appendix
is to demonstrate the feasibility of the process described in section 6 of this report. This is
carried out by implementing a proof-of-concept (POC) and demonstrating a scaled-down version
of the system, as described in section 6. The requirements of this POC are

• The system needs to be distributed to correctly reflect the real-life scenario of the Aircraft

Communication Addressing and Reporting Systems (ACARS), the health and usage
monitoring system (HUMS) engine, and client applications that run in physically
different locations.

• Follow an architecture similar (but scaled down) to the one proposed.

• Demonstrate the use of technologies such as encryption, access control, and replication

required for HUMS.

• Simulate the different problems that could occur when using commercial off-the-shelf

(COTS) components and a public network.

• Have a graphical user interface (GUI) display to depict the various components such as

the ACARS simulator, client, monitoring module, and so on.

A.1 PROOF-OF-CONCEPT ARCHITECTURE.

The HUMS demonstration project consists of three applications using client server and sockets
technology for communication. The three applications are the ACARS application, the HUMS
application, and the client application.

Figure A-1 shows a block diagram of the architecture to be used for the POC. The HUMS and
the data repository are assumed to be within a private network. The data repository contains a
replicated database of the health and usage data of aircraft components to mitigate failure or
error conditions in one of the databases.

 A-1

FIGURE A-1. DEMONSTRATION PROJECT

A brief description of the purpose of each application is given below:

• ACARS Simulator. The ACARS application generates simulated ACARS messages and

sends them to the HUMS application over the network after using appropriate encryption.
This is a Microsoft® Visual Basic® (VB) application with an appropriate GUI to allow
the user to simulate different conditions in the network, such as failed authentication and
buffer overflow attacks. Then, an appropriate response from the HUMS system can be
checked. The ACARS application also provides a safety checklist that should be checked
before a message is sent to the HUMS application.

• HUMS Application. The HUMS engine can be considered to be the heart of the system.

It receives messages from the ACARS simulator and from the external clients. The
messages received from the ACARS simulator are reports about health and usage of
aircraft parts, and are stored in the data repository. The data repository itself employs a
rudimentary replication scheme to illustrate error detection and remedial techniques in a
COTS database. The HUMS database also uses access control rules to authorize and
authenticate all communication that takes place within the HUMS. The external clients
play the role of any third party application wishing to access the HUMS database, e.g., a
maintenance crew. The HUMS application is implemented in Microsoft VB.

Access Control
Policies

Data repository

External
Intruder

ACARS

HUMS

 Client

Private
Network

Internal
Intruder

 A-2

• Client. The client application simulates the working of external entities wishing to access
the data present in the HUMS repository. Each client must authenticate itself with the
HUMS application before accessing the aircraft parts database.

A.2 USING THE POC.

The POC was used to learn lessons in the following areas:

• Safety features to be used in ground-based systems that use COTS components
• Security of ground-based systems that use COTS components
• DO-278’s applicability, weaknesses, and strengths, as relevant to COTS software
• HUMS guidance related to COTS
• General ground-based systems implementation

 A-3/A-4

APPENDIX B—SYSTEM SECURITY EVALUATION CRITERIA

This section describes the Common Criteria for Information Technology Security Evaluation
Model [B-1 through B-3]. The common criteria (CC) is used for evaluating the security
properties of Information Technology (IT) systems and products. The CC is to be used to
compare and choose commercial off-the-shelf (COTS) components for ground-based systems.

Deciding on which COTS components should be used in a ground-based system poses
challenges:

• Determining if a particular piece of software, hardware, or firmware exactly matches

security needs of the health and usage monitoring system (HUMS), without leaving the
system either exposed or expensively overprotected.

• Plowing through the vendor type and obscure specifications of the COTS products that

are available so as to choose components that will best protect the HUMS system.

The CC Information Technology Security Evaluation, usually referred to as the CC, was
designed to meet these challenges [B-4].

The CC provides a framework to rate products by Evaluation Assurance Level (EAL). Each
EAL embodies a recommended set of assurance requirements: the higher the EAL, the more
secure the product. The CC helps determine if a given product meets the security needs of a
system. By rating different products according to their EALs, the CC allows system engineers to
comparison-shop and select appropriately secure products for the systems that use integrated
COTS products.

B.1 THE COMMON CRITERIA AND BUILDING BLOCKS.

The CC for IT security evaluation is an international standard that supports the evaluation and
development of security products [B-5].

The CC resulted from a combined effort by six countries: Canada, France, Germany, United
Kingdom, the Netherlands, and the United States. The aim was to provide a set of criteria that
could be used globally to assess the effectiveness of security products [B-6].

The CC builds upon the following standards:

• Europe’s Information Technology Security Evaluation Criteria
• The U.S.’s Trusted Computer System Evaluation Criteria
• The Canadian Trusted Computer Product Evaluation Criteria

The CC includes a combination of the best features of all these previous standards. The
culmination of this whole process is CC 2.1, which is formally recognized as International
Organization for Standardization 15408.

 B-1

The foundation of the CC is formed by the functional requirements and the assurance security
requirements [B-1 through B-3]. The functional requirements state the security functionalities
that a particular product intends to provide to the consumer. Satisfying the functional
requirements means that the assurance requirements have been met.

Requirement constructs include package, protection profile (PP), and security target (ST).

• Package. A combination of requirements components that can help express a set of

functional and assurance requirements that meet a subset of security objectives. An
example of a package would be functional requirements required for discretionary access
controls.

• Protection Profile. A protection profile is an implementation-independent statement of

security requirements that is shown to address threats that exist in a specified
environment. It contains a set of security requirements that may be drawn from the CC
or stated explicitly. The PP is needed to set up a standard for a particular product type.

• Security Target. It contains a set of security requirements that may be derived from a PP,

stated explicitly, or drawn from a reference to CC functional or assurance components.
The security target is the basis against which an evaluation is performed. The security
target contains the target of evaluation (TOE) security threats, objectives, requirements,
and summary specification of security functions and assurance measures. An ST is
needed when a product is submitted for evaluation. An ST is also used when a product is
submitted to a consumer as a statement of the TOEs security functionality and evaluated
configuration.

B.1.1 SECURITY FUNCTIONAL REQUIREMENTS.

Consumers of a product use security functional requirements for the purpose of guidance and
reference when formulating statements of requirements for security functions. Product
developers can use security functional requirements for reference as well as for interpreting
statements of functional requirements and then formulating the specifications for TOEs. Finally,
the evaluators of a product can use the security functional requirements as a mandatory statement
of evaluation criteria when determining if a TOE meets the claimed security functions.

Security functionality requirements are grouped into classes; all members of a class share a
common focus. The various security functionality classes contained in part 2 of the CC are
[B-2]:

• Audit
• Identification and authentication
• Cryptographic support
• Security management
• Communications
• Privacy

 B-2

• User data protection
• Resource utilization
• TOE access
• Trusted path/channels
• Protection of TOE security functions

Each of these classes contains a number of families. The requirements in each family share
security objectives but differ in rigor or emphasis. Each family contains one or more
components, which may or may not be in a hierarchy.

Consider, for example, the audit class that has six different families that deal with various
aspects of auditing. One of the families is Audit Generation. The audit data generation family
has two components that are nonhierarchical; one component deals with the generation of data
and the other deals with the association of a user with an auditable event.

B.1.2 SECURITY ASSURANCE REQUIREMENTS.

Security assurance requirements aid the consumer in determining the level of assurance that is
required. The developer of the product uses the security assurance requirements when
interpreting statements of assurance requirements and determining TOE assurance approaches.
Product evaluators can use security assurance requirements as a mandatory statement of
evaluation criteria when determining the assurance of TOE and also when evaluating PPs and
STs. The security assurance requirements are grouped into classes as follows [B-3]:

• Configuration management
• Guidance documents
• Vulnerability assessment
• Delivery and operation
• Life cycle support
• Assurance maintenance
• Development
• Tests

Each of the classes contains a number of families, and the requirements within each family share
a common objective. As an example, the development class contains seven families that deal
with various aspects of design documentation (e.g., functional specification).

Each family includes one or more components that are in a strict hierarchy when more than one
component exists in the family. Consider, for example, the functional specification family. The
family contains four hierarchical components that deal with increasing completeness and
formality in the presentation of the functional specification.

The CC has provided seven predefined assurance packages, known as EALs. These are
explained in the next section.

 B-3

B.1.3 COMMON CRITERIA EALs.

The CC provides seven assurance packages on a rising scale of assurance levels known as EALs.
These provide balanced groupings of assurance components that are intended to be generally
applicable.

The CC’s seven EALs define a scale for the criteria used in evaluating targets of evaluation.
Ordered hierarchically by degree of assurance, the EALs balance the assurance level obtained
with the cost and feasibility of acquiring it [B-3].

• EAL1: Functionally Tested. Applies when confidence in a product’s correct operation is

needed, but security threats are not considered serious.

An evaluation of the product at this level should prove that the TOE functions in a
manner consistent with the documentation of the product, and that it provides useful
protection against identified threats.

• EAL2: Structurally Tested. Applies when either the developers or users require low-to-
moderate, independently assured security.

This situation may occur in securing legacy systems or in cases of limited developer
access.

• EAL3: Methodically Tested and Checked. Applies when developers or users need a
moderate level of independently assured security and a complete investigation of the
TOE and its development, without substantial reengineering.

• EAL4: Methodically Designed, Tested, and Reviewed. Applies when developers or
users require moderate-to-high, independently assured security in conventional
commodity products and are prepared to bear additional security-specific engineering
costs.

• EAL5: Semiformally Designed and Tested. Applies when developers or users require
high, independently assured security in a planned development and require a rigorous
development approach that does not incur unreasonable costs from specialist security
engineering techniques.

• EAL6: Semiformally Verified Design and Tested. Applies when developing security
TOEs for application in situations involving high risk, where the value of the assets being
protected justifies the additional costs.

• EAL7: Formally Verified Design and Tested. Applies to the development of security
TOE for application in extremely high-risk situations, as well as when the high value of
the assets involved justifies the higher costs.

 B-4

B.2 REFERENCES.

B-1. “Common Criteria for Information Technology Security Evaluation Part 1: Introduction
and General Model,” Version 2.1 CCIMB -99-031, August 1999.

B-2. “Common Criteria for Information Technology Security Evaluation, Part 2: Security
Functional Requirements,” Version 2.1 CCIMB -99-032, August 1999.

B-3. “Common Criteria for Information Technology Security Evaluation, Part 3: Security
Assurance Requirements,” Version 2.1 CCIMB -99-033, August 1999.

B-4. Wenchang Shi; Yufang Sun “An Investigation of CC’s Contribution to Confidence in
Security,” Proceedings of the International Conference on Computer Networks and
Mobile Computing, pp. 333-338, 2001.

B-5. S. Lipner, “Twenty Years of Evaluation Criteria and Commercial Technology,”
Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 111-112, 1999.

B-6. K. Caplan and J.L. Sanders, “Building an International Security Standard,” IT
Professional, Vol. 1, No. 2, pp. 29-34, March-April 1999.

 B-5/B-6

APPENDIX C—A CASE STUDY OF COTS USED IN A DIFFERENT DOMAIN

To study the use of commercial off-the-shelf (COTS) in a different domain area for the purpose
of safety and security, a nuclear certifiable tester for the Minuteman III Inter Continental
Ballistic Missile (ICBM) was considered [C-1]. The purpose of the case study was to see if
some lessons could be learned from the experience of designing the tester. The application of
the lessons learned from this case study was considered for the health and usage monitoring
system (HUMS) case. The entire case study is presented in the form of a series of questions
relating to the safety and security issues.

• What is the goal of a nuclear certifiable tester?

The goal of a nuclear certification is to ensure that no system hardware or software can
impact the safety of the weapons system.

• Why did the old version of testing require changes?

− The previous testing system was developed during the 1960s.
− The method was outdated and difficult to maintain.
− Criteria for safety had changed considerably.

• Why was COTS chosen for any improvement initiative?

− To reduce the design cycle and material costs.

• What were the steps followed for the development of the system?

− Requirements analysis
− Requirements approval
− Design
− Design verification and validation, i.e. detailed analysis
− Approval
− Certification

• What safety analysis steps were carried out?

Safety requirements were captured in a Requirements Traceability Matrix. This took
inputs from the Prime Item Development Specification, Software Requirement
Specification, and so on. Effects of component failures were captured in the Failure
Modes Effects and Criticality Analysis Report, which describes the effect of each
possible component failure of custom designs and COTS components. It also assigns a
criticality factor to each failure (based on the severity of potential damage), provides a
failure rate, and so on. The Testability Design Analysis Report detailed where each
failure effect is detected (e.g., during testing) and the system response to that failure. The

 C-1

Nuclear Surety Evaluation Report provides analysis and test results demonstrating that
the system complies with the nuclear safety requirements.

• What were the safety related design implementations used?

To meet all stringent constraints using COTS components, a fence concept was
developed. The fence acts as a wrapper around COTS components. Each signal passes
through this fence, which monitors the signals for any faults. If any fault is detected, the
system is placed into a known safe state that disconnects all outputs and removes all
stimuli sources by opening guard relays. The inbuilt monitoring mechanisms of the
COTS components were also used, as was redundancy. For example, to use a COTS
controller, dual-controller architecture was used. If the primary controller fails, the
secondary controller takes over.

• What were the verification and validation steps taken?

This was an iterative process. Hardware and software were tested separately and then
together. Hardware was verified using discreet circuit simulations. Software was
verified by unit testing, function testing, and so on. In addition, all software components
were reviewed by software quality assurance to ensure that they complied with all stated
requirements. An independent software validation team carried out validation.

• What were the software constraints of the project?

− The software had to be developed under the DoD-STD-2167A methodology in a

top-down design.

− Use of a high-order language, like Ada or C++.

− Ensuring memory integrity.

− Prioritized interrupts.

− Multitasking.

• What were the main criteria in selecting the desired COTS components?

− The operating system (OS) had to allow easy integration of COTS and custom

equipment.

− The OS must be mature and have sufficient documentation.

− The selection of COTS instruments in the tester was driven by the requirements of
functional tests.

− Twenty-year service goal to ensure long product life, minimal spares, and
budgets.

 C-2

As can be seen from the above discussion, the justification for using COTS products is the same
as that for HUMS applications (i.e., to reduce development time and costs). Some of the lessons
learned from this that can be applied to the COTS HUMS application are

• The primary advantage gained in adopting a COTS approach is the reduction in design

cycle time and costs. This is a big motivation factor for the use of COTS.

• The absolute necessity of a planning, requirement, design approval and certification
process.

• Sometimes COTS capabilities may have to be augmented by the use of a wrapper to
incorporate safety and security guarantees.

C.1 REFERENCES.

C-1. J. Satterfield and D. Douthit, “How to Design Nuclear Certifiable COTS-Based ATE,”
AUTOTESTCON IEEE Proceedings, pp. 525-533, 2000.

 C-3/C-4

	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables

